
ANDREW BUSEY

Command Abbreviation

ands
Description

say <message>

emote <message>

page <player> <message>

whisper <message> to <player>

Player Set-Up

@describe me as <description>

@gender <gender>

@password

<old password> <new password>

look <object>

inventory

@who <player>

"<message>

-<name> <message>

:<message>

:ismessage>

'<message>

Says <message> to everyone in

your Current environment.

Says <message> to all in your

current environment, but

directed to <name>.

Emotes the given <message> in

the form Your_name <message>

A special emote in the form

of Your_name<message>. (NO

space.)

Sends a private <message> to

<player> anywhere on the

MOO.

Whispers a private <message>

to <player> in the same room.

Other players will see

<description> when they look

at you.

Sets your character’s gender.

<gender> is most likely male or

female.

Changes your character’s

password.

Looks at <object> to see its

description.

Sees the objects you currently

have in your possession.

Sees who is currently logged

on or if a specific <player>

is on.

Andrew Busey

SAMS
net

201 West 103rd Street

Indianapolis, Indiana 46290

5DODOOOOH HHH GD 9HG9HGHG99FOOSGGSG99G99OO0'

Copyright © 1995 by Sams.net Publishing
FIRST EDITION

All rights reserved. No part of this book shall be reproduced,

stored in a retrieval system, or transmitted by any means,

electronic, mechanical, photocopying, recording, or other-

wise, without written permission from the publisher. No

patent liability is assumed with respect to the use of the

information contained herein. Although every precaution

has been taken in the preparation of this book, the publisher

and author assume no responsibility for errors or omissions.

Neither is any liability assumed for damages resulting from

the use of the information contained herein. For informa-

tion, address Sams.net Publishing, 201 W. 103rd St.,

Indianapolis, IN 46290.

International Standard Book Number: 0-672-30723-S

Library of Congress Catalog Card Number: 95-67664

8 OF Ws YS 4 B & il

Interpretation of the printing code: the rightmost double-

digit number is the year of the book’s printing; the rightmost

single-digit, the number of the book’s printing. For example,

a printing code of 95-1 shows that the first printing of the

book occurred in 1995.

Composed in Stone and MCPdigital by Macmillan Computer

Publishing

Printed in the United States of America

Trademarks

All terms mentioned in this book that are known to be

trademarks or service marks have been appropriately capital-

ized. Sams.net Publishing cannot attest to the accuracy of

this information. Use of a term in this book should not be

regarded as affecting the validity of any trademark or service

mark.

President, Sams Publishing — Richard K. Swadley

Publisher, Sams.net George Bond

Acquisitions Manager Greg Wiegand

Development Manager Dean Miller

Managing Editor Cindy Morrow

Marketing Manager John Pierce

Acquisitions Editor
Mark Taber

Development Editor
Angelique Brittingham

Production Editor

Jill D. Bond

Copy Editor
Anne Owen

Editorial/Graphics Coordinator
Bill Whitmer

Formatter

Frank Sinclair

Technical Reviewer

Jennifer Smith

Cover Designer
Tim Amrhein

Cover Illustrator

Jeff Yesh

Book Designer
Alyssa Yesh

Page Layout

Charlotte Clapp, Mary Ann Cosby,
Terrie Deemer, Louisa Klucznik,

Ayanna Lacey, Casey Price,

Tina Trettin, Susan Van Ness,

Dennis Wesner

Proofreading

Georgiana Briggs, Mona Brown, Mike

Henry, Kevin Laseau, Paula Lowell,

Brian-Kent Proffitt, SA Springer

Indexer
Cheryl Dietsch

°O2OQOGSSSS BO OOS OG SS9 GSS 9S9 9GO9OS90G 009 G9O9H90GO900000E

Overview
Part! Introduction to MUDs and MUDding

1 BE EEOC CLOSE IVA LIS scent tus ec ie scsgs ecg end ie snnphatecscesder came Sccxscieeseort 3

2 IVE I ASIGUL EALINITES Be 08d, otek SPH crane eattwnn ibe ce casein Sincakteovons Pe

3 MOUIING DEP EtSOnd ANC ROLL AVI. creactcvs py sens eases oot lencseers ot

4 Ope Chiie TE ONUIIS MC. 23ers het AION Oita cuiostnn oc ena demume wore 49

Part Il MUD Player's Guide

5 DANI ES OCIGUASSUCS aitses sccnatcceethcs ese aevk cops ee mutate sa seleaiaosuseaeantutceh caekt Tih

Green MUI olation ships ca ste.F 4.08. gee ie ot Ree css Paden ape tnes fossa 91

i The Social MUDs—MO0Os, MUSHes, and MUCKS0000000 103

8 LPVADs An Introduction to.CombatiMU Ds satike..s..c1azt ssn ctecdeceee 115

= et WIEST Ae I UID SS GSR RAM ie RES ura Orta ANA MEDORA PRC Rnc RAAT E BRare tr rg 133

LO ame VA SC Ur yt ais oy Sderot sae 4 ates OF Ueda et Tes GIR acess eves eees iow NBS)

tie BeusocagVizaro (MUDGING dt tne NEXt. LEVel)). 5.2)-.:<.cs0200s5-srsesnesea 205

Part Ill MUD Programming Guide

Le ee AAO MOL IOCOL NELLIS atcrcsns cote ee totten te bev cat snhne rennmerrunyarwoaneon’s PIN

TS Essentiais Of LPCaProsramiming. (on LPMUDS) avis. ..:ccscsetosisaeesecees 219.

14 PIOCra Out e DIOS cnc scereweneesnein ab esdls secu sats eeuuicscncdsorvervaseenes 307

1D IVE Kear iend Siac TOOTAININNIN oss x. cis sssnctasvased natectnanesSeacauacren se Will

Appendixes

Pree IAG TNAND ID GLOW? PB SES ett t cense ca reeset est cca tuan deaionvvnae auc ei aeamseia 435

Pym yr SCAN ieee teak cncnetin cs <y-sp int yeu tera tly wpnnts'csn bpFaccwenecuwsteuus 477

Cee VCP ielits atic Vv Mele COMIC! ELICIIT cates: weromansiehseapessceseoueesees 481

D PA VAUIAID CS CEVCI Or tet seteees conc set a5 mana ree nte Sh ee bined bestnee Nu susousaveneienscese 487

GHDD9O9HHHOHG G9 OOOOH GHO9GHDOVOOHHDHDDHDVOOHHHGHHBWOPOHHHHSVSOOSOH BOD

Contents

Part! Introduction to MUDs and MUDding 1

1 Introduction to MUDS (220 sicccccssesscodsscoscusssoeusuaterdceccdsanvsdeuseces 3
Differentily pes OR MU Ds ax texan ten nee eee eed ae nt 4
What Ista MCU Die aoe ae han taj cae ee cas ern os gee 6
WINE DD Pes aes code ta tectrs Meee Mea ieaet nate et ae cs, hea ee eee 7
ACGICUIVEMIESS ty evan tere ds eae tt tee ene 8

DUNO vests tices ttvdeett secu celauaie cea ela ae eeeatig ieee ue, ee 9
2° (MUD Basic: raining vcc...ceitrciescdiee tee ee 11

WISI ANU ee ecsst seen we acces tele az ea es ok 2k ee ee oe 11
Prompts When. Doll ype?- aed cre eae oe raeiees 12
Navigation: Moving Around 0n a MUD....eeeeeeecceceecescesceccecees 12

HOW MUD Se WOT csi tactttirac th eee Serene, eae) 9 a 17
The piayer Ob ectente.sun acs eee tt ewe ee 18
Theroom OD iectw sac can a eee 21
ORT Cr ODI CCS zs iat cuts ae leet eee cek eee me ere a ee 26
special Items on. Combat MUS, 7, 2tttt ae th 28

SUR ALY 5 oie aaa cca tae a, ae re 30
3 Your MUD Persona and ROle- Pla yiii 9). coccccccsosessanseossecesseuee 31

Your MUD Persona: <.ccstoese eicren eee eee ee 32
Gender Relations «2. cee e, keer cee pee aS

RO LEAP LAVAS oo. ctes acces sacs tty eee ae ee eee ee 33
Mess fatistital Being) sctcc gear een ee een eis)
BRAVO RU eo asnenocgunGiess sete Ae ee een eee 47

SITTIN EY ech asin soitscees ass tues ae re ee 48
&. Connecting ToiMUDS% sassssussssets aceon ee 49

POE ir cosas ip asdit casas areca ap sycael san Uae eee ee Eyl
WIDQE-VOU. WIL SG: cis.) lat aaa eee mene 53

Logging in to-Your First MUD «....<,assde. 4 een ee 35
Passwords vtenscdiseoeaveccsrl sbslaeie ci ea ae eae en ate Aa ee 1
Logging into Your First LP MUD. aie pecee eee eee yl

Logelng in to Your First Dik MUD o.. a0 see ee 62
Logging in tor Your Pitst/MOOd. s+ eee oes a ae 67
SUTIAIMLAT Yrs dea anetincus Xa, 8 des cv cee aye one ee ee 73

Part 1 MUD Player's Guide 75

5S "MUD 'SOcial Issues cscscss:.ssc0c-cssccteerco 77
socializing On MUIDS3 2. icin. Mics ae ee 77
Walt gS... csns secs warensuossaycuadaces tug taee one tea 78

SQOGDGSOOSSS®SOSH9SS OOOO 9GS9GS GS GOOD 99H99HOOOHGOH99H9OOOOO*! &

INGE GUMCE Gy ee sere setecrt ooo enn: feccleu didn CAee ie hoecsaiasssansencbeheveannce 79

dive Communications Comimanmdst cancer eieesscctstaekteacreee 81

ULTIMA EVartereeshctcoucucesascbecheres mete ae Meee Emo conics aoacieemareaseere 89

GF MUD Relations Wns 1556555522555 soso cess seccsscaeestesonscsecsssecssesecevacess 91

IVE OE TACUIGS NDS atic. rce canoer covert neds Giae lh astunme tsdeva sean eters te anes 92

IVES ROR CO ceca heer cect re ered ena cas attache sw seca ce haewsuee oer Meee 35

TNE SV OLSE Wescesse teste cette eR recs eeeaeee crc keene eee 93

pve UNereuLitai ts tO the Deception? iuc..<s:-.reresgere tester en 96
PUDe et Sit Ua LOL ieee ces sitet eos aneaeartecgearem ten tvacturtendi cers 97

Mcerl Metestiap py rE NGINSS 1. Ate cotter seater tec cctetuioeon,-ncae 98

Ahings to; Remembermin MUD Romanceye A ...0. osc ecteewunsens 99

DULNIRATY. soot oe scat aC ARTE ORR ot cosets uerpe mares 101

7 The Social MUDs—MOOs, MUSHes, and MUCK............... 103

Different Things to:Do'on'a Social MUD: on..2..c.c0ecgoueccs 104

WADIA CS ANIC UCN S oa. es crete sacs cose sececen seas tans ee eens 105

10 | 0 WP RES Si AAO AP reese AT REINS ES oA rere ie EA 105

WICC) BOOUMDLNGS ta. cer ce scares nasaset oocaee shat usa ats sate sucroneerte fetes 106

Object Numbers: MOOS saris. esas ose terse cs ee aopeentrsensees 107

IVA IN AVS ONION coc ceases coca greene oete meen crs testes eee 108

SP OCl al POAUUTOS cro -5st eves cigs cure vot oreseemneteneetaiaecteees wanes cocee es 109

REAUUEES @ se csisess vans vai jolsn ss ses rs seas onpeos pshcetve cated danse dees seat stat acgeuas 110

EMiOuons ANG RECUIN GS. < cs ecgerceettent tain cuamenstes seca speastenee: Bit

BLUITM baler coo tae e sepsis Gran caicessaud oe povemancas snow ee Seber e ns Se reson yeaeaueetencece A es

8 LPMUDs: An Introduction to Combat MUDs................... 115

Combat MIU Ds.ccaintaee. ts Metis taboctemcas rirtccens norees san veumcdatuetorsedtats 1s

Game-Oriented MUSHEeS and MOOS) i: ccccick cscassevsonasenssncertee 116

Other Systems Similar to Combat MUDS:cceeeeeeeeees Le

LPAI sea aeenca cs Ate ie cee cesta oledt ns CERIO Gah cs cpccteay oust ayen vee 118

ERM Dr Omani SUM INal Vittacsc.nn create nestonss cxaenbunsoavesasaccees 118

PP NARELLAN OUP ics cegticasanen eupaaiets oh beet te aR teen csnucans onneemiaadiNes 119

Glos cna) eens et Rep Sete cere nie Cri ein niers eyo te Soe ee eee 126

Deatia anidsDyimg aarti ern eevee Wess hovoieat<aatsuenctuesess 130

I ON AENCOTMOTUL a caus eet dev snarmantatee ase Aes Meet ete Mich eencuandixsoncecenedos Pau

SUAIMVATY ss pav tetas cera dees odes een copter ae aga sch nee nle ath Neaiuknakvatens tcansineres 132

OPT TANEOUS Siepctien ssc ccntatieteat sastssicdaresesteetorsecauttvtrssassaeseccssatyeyss 133

UGUEIOe tesa LR Vat) LEVY OL ccsca coer vacti ccuse sca vosbactarscereunrevenatades 134

TOMEI RADA AVN MLC ee corr Se thates utiaat ical ieenecusartWoass aevebeesds rs 134

DikUMUD Environment and COmmMands.........00..s0ss«ecreseverses 151

Daw itai the DIKUMUDOWOLIG aii. scsssencseseessosnasstvsasenesmnas iow!

SOA ACEI AICS WEE. ooo seen fe Mesbtetien ec tescocas sedi coucesteebekssxtencesse 155

PAE lc EI ARGC (OOINITOLIGS SE iadi ssh ont vale viovenen ies sede cavennncoess® 156

CIaracter Int OLMaviONal COMMANAS ...2.2/.ccescsens.cnevismesvoest 157

Environment Customization Commands0cs0000 159

Ghraracterpe Nt DUTCS we eeacecce arcmecowe stare eee one en caasecwusouseeseni’s 160

vi Secrets of the MUD Wizards

1DYBOOOHHOHHHSDBHOHHHO9OFSSD9OOSOSOSSSES OOS O099098S96

Practicing and Practice SESSIONS 2.2.2. .cscccssssseerserocesosesosssensraes 162

IMOCIEVIING Stats ivscest .vcpseervesevedsuderdvaststs te aeoeys sevaenreocueaawasets 165

Clraracter Classes «coast sacsscocsucueneumunay seaeeeeren tenets sanenrudoses es 165

EQUIP INGINE va. se, 20 ie stesso svvsumaes bev eumnnetenetnades agar te¥e~ae=-agace=-ces 169

COMMU CATLOMS 5: casey cheesnesenasederncdacacarsesatasuoaa vermacararsve7 ove 170

Grouping and Collaborative COMDAt os rasccicsccsars-oeenvencneenennee 172

Preparing the Cliatacters SUatC Sy oc. srecz syenasuarssevcessnnnneasnare 173

SUMMUMIALY. satancosrssanesestesttsnds tot cas aves ofliveedaasepte we atuas coh reverts iaamneactane 177

10 MUD Clientsc.ccccescocescosccscscscesscccssccsessarsscccsscsvaceese 179

Wihath@ an car G Wert DO maereg ener ete tg reese oe azandousaaecenstease 179

MacroiPunctions: ance AuGOna tonne (ioe ances cece scutennsnters 180

Uti erSrand AUlOMALOW js.c-cccnesussxene ot dette iecsdearocicrenpraaaes 181

Pe XteN anvil aetO Mie aed ckieeas see seas eect dara tae egos eee 181

CUSEOMW EIVELOMUIENC .vajcgaisesinecassacetasc dss decceamvencen nashanewaveneontcnee 182

SE CCITT) a CIN eee ae ce ete eran acne me ea oes eee ween 182

Si SECU RC CIUIMEIINC INES a2 c hae nt eas ete vances eae wae 182

DENARAU SO CUD 45 225 scan some pases cae waaae seen nen Sa eeecsarcae 183

Uncomipressine the Archived Hite vais. sc.cssnceecstusssecsessecaqusmecse 183

Comapiling the Cuent PrOgranny c.<sscgsarcase vorysavsouecesosoccndvasennst 184

Tine in tities CHEM PEO Gratin enc cnt cu speecscx aac nceces aoe nena 184

(Gray ae) oy NG g TO hh aha bp el Seem bree nc He an ee Pont ren rere er Lear ocr 185

bQU yah ay LAT af GU a ah 4 nen atreetcre re MPencee hse Mire neler tere ererure rts ee 185

Openime'2 MUD Sessile soe rec cca seccw hate once ans ten rea 185

SAU S PORNVES soap cesarean ade Severed. coda ag case neeiaceanienndics 186

Savin Fy Oui LIP ti Biya MCN teres oce-5 care seaprares bocce ore see 186

MUD. Navigation with. Min tint.<.2% 2. .2-6..52sessre ces coene cactus 186

Thewmalias Comm oid ve si pec tees arene ecu eee cis wae cueas 188

AUtOMatiOns [EITM HACHON cade raclthe tases nce, ccsrarceseectenee 189

Customizing the Timtin: Br vironment nce eoaecs ve devencsyecces 190

ACAD CEC) FMETIOIIS ccxcateMuceceett tarwhceecnte see totes vais i paneenene tee 192

Teg LOOP BUNGCUON y.cesimsconckce Ree ys re em ion cease 193

A Macintosh Client MU DD weller. .c.cunsstnts 6 .cctercadc.sseeannesess 194

Configuring MUD Diveller \: Oct -csy.sstteccrtavon-essvemaazeccnanee 15

Openinie @.SesSlOn: ..atiaacet pda. saceee teense tees teeters bre canteeee 197

The User: Environmentin:- MUDDwellers sete. cnc cone Toy

MESO OS® aap ibes tote nck Sard cr Canine ee eae SR EE Pe tare 198

Another GlhientProgram cs sicncruntceee me eaie nee eee 200

PRT PUL St satnevahteca lige cohen ee see era eee eee ee eee 200

Glossary, ol @lient Penns cc... aa seca eee oe can ene 202

SUMMIT Yscsssansreueadsacn eossecsopesuscenaece nt eee me rere cena ee ne 202

11 Being a Wizard (MUDding at the Next Level) 205

What is a Wizard and Why Would You Want to be One?....... 206

Dow WamtitoyB eran Wize clit eres eee eee een 208

How DoW Become:a Wizard? ei ee eee 209

SUIMIMALY. 22. 5. dscesdsce sass aanbeccnesecdase eet cater RN ag ete 212

Contents vii
2222 BOOGHGHHOOHVOSHHHHHHOHHHHHHHHONOHOHOHHOOOOOOOE

PART Ill MUD Programming Guide 213

DZ DC TEICD SIGE OF MOU DS so onde ee ssces cuespes 8p toacsst0cteesensae vveseeass 215

VEC SETV CLS css casretcctosced toate ay IA Mets taaeNIMe ence eat oes 215

ETICSIVINT 1) LAD hae eescsae Pe ee eae oe RE SAMO shee eet Ganest ass 216
SUTIN GIL: 555 ficou sn neeee CLR A, A ARON GAL tt Reel ae oaee 2A7

13.__—sC Essentials of LPC Programming (on LPMUDs)............... 219

ENG WACOM ATG Serccrccrys eo tah es Sestvenstuacetsa soeceats. eicerser eeaaew acs ceens 220

DiMA OUMICMD COMIN NGS ssa ees coca case Aes seauiineatee sve acer 221

VAY CUIACTIEA OMIM ATI See ct oa chun craton neste eeu wee aaa otiuee sy are 225
IL CAS Y SUCH GOIN ANG S tocccsst au tevons chee tises ari hct onere eseme tees 226

ObjectsNanipulation Commands occ. 15.<-ccgesvensewecvusedsetevacae 233

NE SGEIE Ce senh one hata Cpea pmeaty Aen tenet Rap irr Aenea ey Rare rar eich et 239

GETS 8 TEMES aC) « ee ee ne Oe Mel Ra Re cere 238

MG ATIUCRVCUSI OU siete ses wesie seo hds fess ceeete ts hoa cata eae nca todtane cent 239

The MUDLib and File Locations within It=........:..c.:cc.ccsss0e2 239

PI OIMEM SITE CLOTIES 8 4.55524 sgnte sane ceseneentce eoosec esas ccdtenns ceoeuatetiwes 240

MME AOG IT COLONY 5 cvisun exces oi eens dante uahig Uh tan eee nee WER REDE 240

DIAC OS. IDCCLOLY se ras dcncs acta canat stan eet aPEM on ance oe se seis vues oxcreee 240

HERE CDJECE TIP CCLOUV care Sect ese cay eee enn eee eae e renee 240

CSO PEP IIL CCLOEY sgoyeon sacs ewnane-leeesontsnccrantastc puso its ousted cent’ 240

STECS PIGV ERS UIT OCUOLY, ciscec coec ons thoes cranes Sauae Menace. want rcs saasecesens 241

ATE SCCUIE TDITCCLOLY snecacieueescstsnesase vducetstyesacpvones beaseis ears caro 241

COUTLIMCTAGS Deecactiis screens Mn ea Gnas Siow ath sais. Cia wck caseetdddoenevshevesuassone 241

WATIAIDUCS i ccsancsp sve vasstcgeits sp etunecs sacssonnsenrvastatacScuksnaveresunsevs moses 242

GIDETALOUS tae areactuhsnrs weesubant anuntns caesmebauia cage nasanudsexsiaiancoenness Skee 246

PUMA Meter shva1% casnuevicbulienisus suadeiasusenacciausdineutis np bvaeunccessvsscrasseone 248

LOOPS me eerspensieh sairina sch apo de kt Sian segasms asehresasahlsaniSegeie ws sve doduaa soasen nee 291

ESCAPOS ACTING, AIL) RUMICLET os 15s sade cite asiesensncdesemesaarpomccesvba cae? 253

ISELSIOM aI: TAN GLEAN CO i aaa cans toy saivigesaieweses cdenocosonesouetane 253

UUTICLONS & pussictusaseaevinedo cs cleus Sh tertcnumpadte hans Malus ron cusn sve neeetccoucety 254

ME OCU SR OOUUS Sec rsancscraccrehe uc taste casauas nvacir ecotacevnapue tee ee 291

CEG CTS VIOUISCELS pauiiterssouisiucce renica ces cata cpanivesberersAcursuece ety 295

EOCHIVE WV CA DOUS oka cwasncotr se ineeh soup caG x3 fiRsotininnewtcnisvasenh corolewa ses 297

CSOGIENS SATIN OL exerey ss sectors Voi as perce et ucinaaeeeess vine ia sate ss entonehewersaenes’ 299

OGIO CON LAIN ETS ccroscnasnncsacanncotvsnmasens taqiaysens neous sencedeseneunsines 301
SOOM LL CASULRG so couestossvessessnscrenseveneuss si vi uesbsaaiesdaneesounsanverened 302

Atrachineg YOUrATEeAtO THe Maly May .iiccs.s.cvcusacsatnenernnetous 304

Watching tot Undocumented Features ,ss.cs..sssseissocseareed 304

RO ERC OMI YUULL INCE sey cdec see rates auc ent as xUsnor seasivniechodabondecceuls 305

SUNN UL Veta ne eetctan es oF ches dv Fateashagosa oigdiansean rand msensd olnssTavouspsn¥vense se 306

14) =—s_— Programming MOOSccccccrecssccesccsscrcscrccceccrecccsccssceeees 307

Se RIIeMCHILS On NICO) Oiicrirey dc coaetieseuln stipe shdsdvdsseevseuuivast 307

WGA As Cumettrcceeseaweay eit ter ety tea AMMO Roe w Suck dea viea hub stcataes 309

ViCoU a @ INIT ammeter Rete te ee re Ree ne hoe Fees toc aha Sad asiisesewcns 309

viii Secrets of the MUD Wizards
DOOD ®OOOHHOHGH GHD OOOOH HG HGS BOOTH OS DDB BBO9SGGO9SBSVBBS9GOG%

The: SQrvert a. o.a0i5. sae ease aoa ease ote o a ewan eh 310

BaSiG OD jOGES carr ssvsnertcsonecnarinrcsesdiy cadsvosecad exdheowernsaresaahal tia tutes? 310

Player Classes‘and. Programmer Bits:02.....sterccecessssensanannandens ye

About Player CIASS€S cn. <o2:72s5.n.4-otemtaeneeereAee sane tenanencdacanatneases oe

ADOUE/PEOSTAMIIMET BIS: .jszsc0: nencsesvaneatsanrnessOeennrarenacessnstePmnaze 311

Before, You Begin Programming 02. oce-cpcesdarcnasacdrnsc<ceswanssnsoncans aiZ

Greating and: Customizing Basic: ODj@Cts xx. tecccenencodivesacxataaeancen 312

GAUTASES raves caessactenseStetanncs Gis tis aoompecs scsentuna deuacebanacp=ait Atty arknasaanes ois

ODIECH NUM Bets AlWaAVS VOLK ccntess/ccn2sestinnciscscstanvepasarnxedaae 313

Renaininior@ Di CCtS aca eacst orcs tssentsvachsoweent ss oleae onaeermnnaies 313

IDESCIIDIN SE VOUE- ODI CCUG acct of ita ctastoans eekse raaia eres 314

Wilia tT Ret 5 CAT IRs LOG steers vs paacuseeceata sas ai

PL AV er CSCHp MOUS 12. tees tet ge tecvcScutur casmerd dackdavadsy cawentae eakeeva aes iS

(CITATION Ob AT CHES: cecscane st aad on ctauno. tinateseenn<eceueeis eaanodstaaaenee 315

CreVUINS RIG OF DICCUS aan xasc0 21s yesee-sceenvweapanoses ddudeadsdgswanraares 316

Sentences, Vers; and OD ICCES' crc. cendsaat set eeussercus te ieennsustavsesnnanes 317

Dg So 9 Sosa Rees SP Aa hadi) ERA ek POR eee One eon anche ase 318

SAV GAN VOU SOCD civics caectiasan sau cag asgsrsades cx axaruerveneknex~ek oluaerneers 320

DO VOGEL Ne aerate en at ee caine sat raesdadn ee sandavevonecis casement 320

VWerls On PIgverORICCtS i ccancetecetasc vis ectesaeags~sdexesrveeeencaceuuuane 321

OY) sO UCI OV Glee reat caeaceseetice aes Seaguaea ca orca cana RY)

Examining a Verb’s Argument Specifiers <....<...c..<0csssseversueses 324

INGRG ODOC US oye papayas arene yerren oe eae nee ne tre wus eeec ener ures 324

NO TELLETAAS A WENO, OL SHOE tare cstor secant 5 eren ons ac eeensweetvsee sees 326
FGI pp earacrasesavaeauanorcs ce taaaseanthvat aban. wrens wecmecre ces enueaccuser or envenenieciaes 327

TPG MGR rise cst cautea, os creaas tant se cka ae aha x aeppae cons ace ede at sae
PRO CIING, TV GXN. scoasaicetactacsuteecnceee seca austen ease is sheer nn oaceae ales 328

Deleting and C amore Veet ace suv naseetsenemn et oraaceean ck 320

SUIS CIUC EUS RONG occc ns use re een a cetiu tute een e eta ace a PAS)

SAVE: cr eaocscans Asatgenks, wansgacariosteses vs aes onswiecsuse assets tabane emer tra eae ae aol

Davie CMAN Pest V CEOScrecececanvscaiestavtucnececon acter oan eas po B

Teavin ge Ue Eres scx ccenancresagr caus cotta ede e crane wuetee eee eae ee 331

Cliemnt-Bas@d. On lny aces ccter sce accrue enue tetatnaat orescence Rees

Otlier Baring, Comeman ee. ..cuuc open eeser earned eee Joe

CUSTOMIZING With Nessa tee tcc ence: caare et eases ee eae 332

DISCIDE ROOMS «. cicsceveexscnceaoniesc sank usrae ee nast outer act ane nteegedaae 333

EESGES we sacs cavaateaacn seca revert sounalvcncines cant yoma ceca eearedies teres ee temne ete ee 334
Have’a Ball’, .ccgsansvescaieoracenanesaee areca eee eee 330

QYTORT OUT si sijacasgndacruicn vesttauas cca Stee gece Aa reece eee 337

Verb EXamMples s.i:c:.¢/ccsmnsccgunes een ee eee ee meee ees

Siniple StateMmenitSia..s-.,.ceecees cocoa eee eee ee een ee 37

Calling AIS C8 DS sccst. aves: cohen ecto o eee ane eee ne 337
Len EPL eee Eh er aR nie Str reriisirehouds ee, oie feces 338
Using: Variables ,.csstesatieres tin eee eee eee 338
ANNOLNCeMeENtS 002.0554 ee mee)

3 BH DE

Contents

MOLE Built Vari ables ir. fae eas chic saves Ge ssaGunareee eet 340
ether BaiUt-lasV arid blesiasygs te stecneretiects cess avira 341

Subroutine Argument Specifies ar... 700s tn cis hoes 341
AS ECEIN O RIGNOLIVELIS tren araseccrsetetac ces sertert areal w cco ee 341
HISTOUCMENIES |e Paster etassiem Henn into tek es LE 342
IS OE ety ener Bae eer eee ce re ed oe ee ae |e ee 343

WLOPCTISES © ie Beate chen toeeute soe cate teens aed rn echo eos cn eat 343
WVTITES PACE sit ye arpaaracceseeteranacesas states rieaene need tases eee eee 344
Verbs fon Settin m Properties: iis, oaie tem ee. okce eee 344

Messige Properties aiid: Pronouns e826 need es eee 345
MOTE A DOULPTODETUES tan procs das. sien ed mee a eee eee 347

REMOVING LO DELUES seen. ceases sori cev yi irae een tvs eee 348

BULL tEI T LOP erties 288068. ua ety ora Gira Meena Mee casa 348
PCVOTICCCLY CLD VINE K (oes ts conics em Sas oma 348

BECP OSUIOINS i) oo iios te csascavie hsaee ects camer sere eet ee 349

EGRET ASE ETI CRD) COUSistiss0h.cs'ny coated s Prancerner Geena aa ate 349
Owatersnip and Permissions ¢4.<..-075-: oes ee ee elon ae 350

DICE TP OMMIssIONS wate cere Gea eC ee 350

Property. and Verb Owners ni piccse:.355< Ree ve acess, Bot

VCLOUECETU SSI OTIS Zyctesncaot. se she cok ene ree, nat een Teves ts bce eho!

PAO DCU YEE CLINESSIONS suse erect: Ctmernen duct tay storie 352

EXPIONIN S AIWODIECi es .acre, <ories euntccaeam eeee atest rein ase ecar 350

Ae ee Am SOS eA eT LE TE Pa ai ee ere relia EP 356
BXDLeSssions and Basic Datan Ty pes. cc. mcccsccsaveveusibesssenctssoctecseoters 357

ER OLESSIONS 5 te ates Sorts tree orn cikaasapehen, arch teeta era emeneee 3o7
PAS SAR TUNING a ples cpa sinc sunausesaead arasees si caeuuieineacetiones os tacit 357

ASTER GUC x oh... sgsenszs oie cceseras cormiiond ca teactas Secon hee 358

LOQICAIMI DOL AVOES siis cesta ena tete ec ius seneto uae edd vi ceasteredks ine 358

CO DIE CUS: ANC SAS. oar ua fe fo tocar ae te ka scatieatns tod, Oe caste ates 359
PEAV CCA OLOCE Sith since cesiets sericom ta see eels eee oh ecg tees 359

CORGIMONAUEXDIESSIONS aoy.emnisteu enna be eran asec Cher teataceee B09

LIES Sas ti aa ties cad Ose nae ee sa ape aR Regent nia) sSekcan scant Slew

DASE 6 ois Sees op canes Ceiges Benes acannon aoa ianms ches on esesccscbellecioe es 360

COST spac ainiiss tes nos iaene tanvenancte staan teh domtaaute Bea e east ss exe cvengevbnadaenieanes 361

CVS Gt DUAL te FIAT CELOLNS sete as senty esse tan tats feet. iesksceneesecal aes 361

ME VERO LCC ES ic rctetate reat eee ts cscs aaa wen a, za hah AGM. x.aneguntey tote Raee 361

DSTI EO MALOU LS Net acta caste cate as cee eee Wn si. ty ask veicd odivueauegonieeane 362

VOL rn att nM as tn Set STAN Sit cect Rages ors ob a et eee cat 363
BVA cr ee PTL eee Gi otnne. wats Mantas veers eice ents (vt ann hat ese laa od 363

DOE CULL ELLS On, costes oni s8 Seat aaeDaat yaar . LoxkdGuat abet cos Saarieeescades 363
ROR MUNA AL LO Ste tree Cott ae Sta BR ace AA IS ws coding dns ncdsicsbnandsvinay 364

ONE cee ee ante eae stan, os ss aay oPdh wrsctadnctesiaerdaressuodsegaancsors 364

ERVIN Dy OLD ae cre oath sea eas MOGs adil. vesieplnaseisgsBianeccacsenngesess 365

PxT MUTTON COU A NCU attic e503 dente enc nnpgagticnnnrslfh wavievsnnevoleowses ve 365

ix
9G DOLSXVDSSOHSYOIDOHHHOGSOOOHHDHHHOHHOOOHHHHOHOOOOOGHOHOOHOOOOOOO

x Secrets of the MUD Wizards

BOQ QOOOH HOHDHYOOHOHHGHGHHDVISOPVHPGGHGDDI YOVOS9SSSBOVIIOO

BUgS sccceesnstsaedesvesnccsnsesneeecenndencdeeaatenes ou ¥redensanaswaynderapsswerondsokersonens 366

Remttime: ErrOUs o: siccce:cacdveuntioes sw eetsnevacvcrassolncecnateresnsensxsrasee demons 367

Other ProbleMSr:.....csseeeeveovevssseocecnrvacdaaensseeoesencesessseceranenes 367

Quota ANd @Auditcceccerceresrerreersesssrssesseseeeenessnensetscssssasssesets 367

COPY resersescnsrerscnrcersenncsersnscenscecsonsccrcnscsenscssceasenasencescnasacsenereness 368

Magic NUMDETS:ccsccesesceeseesnerseceseesssessseanesssesesteeeaeseeeeeses 368

TA CICS tees cuisa Sat saeeecitah sabes eansanavotsa headengucacen dale wuataia situa Asses dnemcedenty 368

ORES © cerns atinaeabidevazacdracsecd dnehaanacasuaxtaovan ar apeaia-cdantenassatentarseaataree 368

SUIMIMALY ...00:.s-0cseccosscesssesasseetstaresssevacsensascoveusnncnavecraasesearesaonsess 369

15 MUCK and MUSH Programming:.sceseeseseeeeeereereees 371

MEVATERS ert erecta case acter rc rege tt eave pexvesvndundiederetiexnsstitecaaaaaawesem™ 372

Summary of Basic MUSH and MUCK Commands-..+4+ B12

MUSHatid MUCK Basies .220.20.. s0ecssesosaciecoenereo<nsnasaenonvennw=<swaen 373

BASIC OD] CCUS)ciaticccctcteonsevoneseveces exensecnae orenanneunsceotiuqeysvadenvates 333

MESSAGES <...ccccesevescesscnesccecynocceanasacscensresesnssasecovssvanesereunsrdecsaess 343

Object NUMbETSccescccsesessereceretceseecesseenenssensnseasenarees 373

MOTO iirag aueedecttawnecessunartanavesanyewaes <cueusvors Geanncaoossaeanevenaasunretie 374

PLOW Oe rooe hs cn estesgies Sacceus cee darcegveneebschegcns tine cacwitawsavans oneal dae 374

RGN 999,222 i eaknseneneteanevavees tandeaeveussvsederenerssiene dots deing7euutouaes 374

@ COUMEMATIS sone care trance cua basen vs ernctecexvctsnes onneod<ranetenenarsseasaen 374

IN OEROINS Ss ecco ede coco oe date cates cans ath an cere Pats ce aaah ov eases caren aan 374

PNCULONY IGLSUS ates coats cn coe settee avenaptenton conve crea axcauavencomensaniy aaanete 373

i Wah GES whe Aner ree RR beere rPecrr er pre rey eerenre re eer terten treet ten BW A>

ETON OUT OUDSUIEUELOIIS mace eaanex corer ccasces -savnsevevatenceuaneseuumceyinrts 376

OCR Seer caren ances Be cee gaa cat oe pau mys oo et wes Nan menemeemnaa ec manet 376

Perera ar reas vavctkabceesauveousntnes Uiseentne cep uaun crater eu noanmubeedeeam dn neranes 372

PElEMOVUI SS. cnn cack teen escoces eynscdnee rags ensvssesenaessute aaeabaonreeedas 379

How t@' Programm YOUr Pla yOer cerseir.ssaese sc cna seeyscevssenenomesuenesees the

HOw tO Pro eta ROOMS cok ectexstrcnnetencxesareesssorweyeexruuheasorunmesenes 380

Howete Progranny Exits, catevsssteencncagh cequat oc orstiresenusmassgttarneeouetcceeey 383

INUUTEISER IRS TC Gontece tee ere tenereeter oak ach Aton eh oe cas te eek ans econo 387

SPE Ta ERUS oS cdc vvan soantuoner ete atone cents Gans cohans em nuvscaneete ceca anes 388

Erp Wanrciiy ERIS cert texcnpece otanrst aeecccenph eves tcueteiscertesennreaes 388

TASES HOE ERTS: act eereseee te crtr cx oanroe ee nee ae caac tack eee cc aed nauninsn ewan seek 390

ROMOVINIS: ERIS 2 yo cerncees coven canansemsenavey yh ctannseveanisnes ecemanencamdaas a91

Creating ODjeets 2c... eessscctcesencse svete teeace mutans wns sorapsetuivewsusae 391

LOCKS "OM EXAUS: spon. vexeectap eee ae sect com ante cen tne seeaaatseee coeunneseoaae oo.

Container ODjSCts ic otaeen at recnnseteenee taconite sass eeceeons eaocs coawaa saan B93

Container Atti butestisciie seevecsme ts evace eras laced 393

DrOp-T Ot ROOIIS cian. leseccrccde ee Mees atone se mesentery aenenes a samuameancaraie® 394

Percent Substitu tons 250.306 i ccesencentrenes senerceasheauneanemeraan teens 395

Formatting Codes. s:.j.ccitmcacaucducecnnencewetsrer een eae eee 396

Registers and Trig@ets 2225..2.5.. ssc. act ss tesasevaaserenas tcwadaneeaqetaopaeare: 396

LASCOR RIG F025... oaceacvevieceeuecvtaedss pee eteesubes Oey tate en «gee en eae aan 307

Numbered Variables ssscecccccs cs ccodsebesscessactnesoleneeeseeeee eo ee 398

or

Appendixes

A

Contents

-2OOSBSSO®SSOOHOGSH OOD 9 OSOGHOOOOHHGHHHHOOOOOOO

Were etried (COnmmian GS Sm tec en ae ees 399
User-DetinedsAttiibi tess: a: .6..ce sce, Mavcricse ol dy. nee, oe 400
BUCO IIS tite setunee utrarer se Mt iver, coeur chan See Stace ie ete RE 400
eS WIGHT Aa OU IAIAG nak, ech ee on isweeicera rene cee one 401
DUIS Sie ett ke mate pace ie fon icc Gaensler Late ye kak el elie Cetin 402
PGC Oman: Qe ease rea toa jee RG asd casenrerceues ia aR 403
Pek Wark and @yiglige OMMANdS ayia, sve c8 4. hoes hes sea eecee 403
SEU AD ORCS 2.0. Soca tt ce eu hat ates cthiner inn da Malic ans ae mie cts 405
PUD CLS ek fa, nclestie sath acted ce Se sa OM sch ci arte hal Pre ere 406
COMI anGsReleren Ces tacn teas toa ee Ree east. 408
MUST Runcorn REleren Ce cule. dtusr<as cose atest ee eee 420
PTS HROL CLOT CC cs ct uaea ees cau) tient Onn ean eee 430
SUITIINIALY Saremcnsat Messe eee too Pee eee aie: eaten sca ee aS 433

PRE MUD YEUOw Pages cc..ccccccec-coececeernceoce tea cen etree 435

PVE se Sree et cm Me Acre OW, cc REPO RRL Ie et REET Uae 435
vieileOrder MUD Listiz.a.saeateniaratt test oe ee 468

Usenet Newsgroups Relatineto MUDs7 aia. ait nike 468
LEC RAINES SHUG GIN nan Ni happier 468
VEC SUITES THUG, ANNOUNCE: sim t tek Mates ee ee 468
ROU SOUND IITA IR ies c seta wat oaed etd ae cae eee 468

FEC ATES TIC A) scion tis eras hic alah oieasan i cei iginc etek 468

TEC ROLES TUE IIS. 00% beeen ahha eta ae irae ge Ri eek 469

LCE CUTER TIMI, UII ieoots cans cn aehida ets sasvesared acer ab sacutvecea es 469
Bade eign TSS aly IaRemeeente ieene PS CONT ne eee nt ein eee 469

CUE ATE ead tweak Nes agg Met aE GPE ok es ic cas 469

GUESS GITCNITUG Fancast stat v sah san seey dates dar aaAN ie Aes vst ee 469

MUD Resources on the World Wide WEDccecccccccccsccseceoees 469

General MUD Resources on the World Wide Web 470

LAStS ORM U Ds ina WWW’ POM at atk weetieehe cnet 471

MUD Technical and Programming Information................. 472

Academic Papers Gon ceming MUDS A. Aes Aiedleadesaes 473
The Integration of MUDs and the World

WIGESWED tare ccsscteoeee rere nats Mest oee ete 474

VENTED ASR OSSAD VA creccanseecassscncntesssvestardessisvacecscasti sas ei secet svete cence 477

PNG TSOEIV AN Scemat ay tease Menten acd Renee oe oF teehs hobkan Cod. cabex ov tuaawsedessuncreed 477

ON BULLS CR shot ce gene ER CE) Pe reco, tn 479

(OD TIVSTR nS HO SPITS a GR oaee cr eee a A 479

MUD Clients and Where to Find Themssecceeee 481

PAN AREAL CL SER VOLS aac car eters sovtcencoatvencindsessscecsececdecsevaseosssccsseces 487

xi

DOD@QOOOOHHHHHHHDOGOHHHGHHD DQOPGDPHOPHGG BWDP GBDPDS BBVSOPQOQOoe

Acknowledgments
First off, I’d like to thank my parents for their support. I know, that’s the typical “I’m a

new author and have to thank my parents kind of thing,” but I think they really do deserve

it. They were responsible for getting me my first computer and, probably much to their

dismay, my first modem. And without all the fun (and enormous phone bills), | probably

wouldn’t have learned as much as I have about computers and gotten so involved in the

online world. So thanks Mom and Dad. Also, thanks to my sister Alyson who, along with

my parents, got to hear all of my gripes while I was writing this book.

Thanks to Mark Taber at Sams and Angela Gunn (who wrote Plug-n-Play Mosaic) for

helping to convince me to write this book. Thanks again to Mark Taber and to Jill Bond

for their patient assistance in helping me learn the ropes on my first complete book. And

thanks to all the other people at Sams who have helped make this a better book.

Special thanks goes to Frank “Bleys” Stevenson, Jr., who got me hooked on MUDs—you'll

notice the “Bleys” nickname; that is his MUDname, which he actually uses in real life now.

Frank contributed a lot to this book and got a lot of work done in a hurry. Thanks also to

my other guest authors, Peter Novosel, Joseph Poirier, and Chris Stacy, all of whom (along

with Bleys) did a great job and helped make this book a good one.

Jennifer Smith also deserves special recognition; not only for her contributions to this

book, but also for her service to the MUD community. She maintains the MUD FAQ

(Frequently Asked Questions) list, which is a great help to new MUDders. Jennifer, thank

you for allowing me to quote from the FAQ throughout this book to provide a different

perspective. Further, thank you for helping to keep me from focusing too much on

LPMUDs and DikuMUDs, and for doing a great job of tech editing this book!

I want to thank the manufacturers of the computer games Warcraft and Warlords for

providing much needed interruptions from working on this book. I also want to thank the

ImagiNation Network, AgChat in Austin (telnet chat .eden.com 2317) and all the MUDs out

there, for giving me somewhere to hang out and play or chat when I needed a break. And,

finally, the theme music for the book consists of: Depeche Mode, REM, Sarah McLachlan,

The Cranberries, Offspring, the Moon Seven Times, In the Name of the Father, Pulp Fiction,

and Interview with the Vampire sound tracks.

OEOSSESOSSSOSSSS9GSHGOOG GH HHOGHO HOD O9HHHHHLlOOHHHHHHOHQOOHHHHOHHOOOOOOO

About the Authors
Andrew Busey is Vice President of Business Development and a co-founder of Net-Link,
Ltd., which develops and markets easy-to-use integrated Internet software and services.
In the past, he also was project manager and one of the authors for the World Wide Web

Yellow Pages from New Riders Publishing. In his recent past, he has among other things,

been the product manager for Mosaic at Spyglass and co-founded New Media Publica-
tions, Inc., which publishes Melvin (http: / /www.melvin.com/)—one of the most fun sites on

the World Wide Web. Andrew has been using the Internet for about eight years, MUDding
for about four, and been a god on at least one MUD for about three of those years. He

received his degree from Duke University where he studied computer science and

marketing. He currently lives in Austin, Texas, with his Siamese cat, Ashen. You can

contact Andrew via e-mail at busey@eden.com.

Joseph Poirier (snag@ho11i.com) is a software engineer for Network Design Technologies,

Inc., where he designs and implements object-oriented telecommunications network

optimization software. He graduated from Purdue University in 1990 with a B.S. in

Computer Science. Known as Snag on several MUDs, he can frequently be found playing

cards in the virtual poker halls. He is the one wearing the bunny slippers. (See Chapter 15,
“MUSH and MUCK Programming.”)

GDDOOOHHHGHH GI OHOOOHGHHSSHYVIOQPSGHHHID DI 9 VIO DGPS BIVOOVOE

Introduction
In the last several years the Internet has grown faster than anyone expected. This growth

largely has been fueled by people’s desire to communicate with each other and a desire

to quickly retrieve information. E-mail, Net news, FTP, and the World Wide Web have all

provided powerful ways for users to interact with each other and with information.

But, none of these are real time. When one uses these traditional Internet tools to

communicate with others, the communication is delayed. If I send you e-mail, for

example, the e-mail will meander through the Internet, eventually arriving at your

computer. But you may not read it for an hour or even a week, and you may not respond

to it for another hour. MUDs are a lesser-known Internet resource that does allow users

to interact in real time. Real time means that as soon as | type something (like a message

to you), you will see it. And you can respond instantly. Another example of real time is

talking on the telephone.

MUD stands for Multi-User Dungeon, but do not let the name scare you. MUDs are far

more than dungeons. Many MUDs have absolutely no relation to dungeons. In fact, some

people are starting to call it by other names such as social virtual reality. This of course

implies that the system has to do with virtual reality. Many still conjure up images of

people wearing funny helmets and waving their arms at nothing as the image of someone

in virtual reality. Well MUDs are virtual reality, but they are from the other side of the

spectrum. The focus of MUDs is to create virtual worlds.

A virtual world, in the MUD sense, is a creation that users can walk around in and interact

with other inhabitants and objects in the virtual world. Those inhabitants may be other

users or they may be computer generated. Each MUD has its own virtual world with its

own unique geography and inhabitants. Much of the fun of a MUD is exploring this

virtual world.

The other word used was social. MUDs are inherently social—very much the theme parks
and pick-up bars of the Internet. I say theme parks because they provide virtual worlds for

the user to explore and enable the user to assume a new identity—to escape reality into

this virtual world. MUDs resemble bars in the sense that people often meet on MUDs, both

in platonic and romantic ways. MUDs truly are social, providing one of the best mediums

for people to meet each other and have fun together on the Internet.

MUDs also provide a framework for games and role-playing. Much of this is set in worlds

that already have been created like those from Star Trek, Star Wars, Anne McCaffery’s

Dragonriders of Pern, The Vampire: The Masquerade, Shadowrun, and many more. You can

explore virtual worlds that mimic these popular books and movies, and explore others
that are original or based very loosely on previous ideas.

While you role-play or game in one of these worlds, you probably will team up with other

players to be more successful in the things you do. It’s easier on game-oriented MUDs to

DOOOOGHOLVSDIHOOHHOYOOHHOGHOOOHHOHHHGHOOOHHHHHOOOOOOOOO’

advance more quickly if you ally yourself with other players. And if nothing else, you
certainly will want to talk to more experienced players to learn the secrets they may have
accumulated and get a better idea of the best places to go.

Socializing is a big part of MUD culture, thus, social aspects and adventuring in a new
virtual world are two areas of interest. While there are many other reasons people MUD,
there is one more of particular interest. On a MUD, a player eventually can become a
wizard or even a god. This gives players the ability to expand the virtual world in their own
way. Once a player has achieved this level, he or she can leave a personal signature on the
MUD by adding to its world. This sense of power and the capability to create also are
attractive to many players.

Who Should Read This Book?
This book is designed to be useful for anyone who wants to MUD and those who already
are MUDding. Perhaps you just read an article about MUDs in Newsweek that was very

interesting and want to learn more, or maybe you have been MUDding for a while now.

This book is divided into three sections that anyone who has an interesting in MUDding
should find interesting.

Part I: An Introduction to MUDs
Part I covers what MUDs are, how they work, what they look like, and how to connect.

This section should be helpful to anyone who is vaguely familiar with the Internet but has
yet to try a MUD.

Part Il: MUD Player's Guide
Part II goes into greater detail about the different types of MUDs, focusing on LPMUDs,

DikuMUDs, MOOs, MUSHes, and MUCKs. For the experienced MUDder, it should be

useful as a command reference and a way to learn about the other types of MUDs. For the

novice, it provides a step-by-step guide through the different types of MUDs and their

commands.

Part lil: MUD Programming Guide
Part III discusses programming on different types of MUDs. The novice will not have an

immediate need for much of this section, but will find it helpful the more he or she MUDs

and eventually becomes a wizard. The experienced MUDder who does not yet know how

to program will find this section an invaluable tool for learning the programming

methods for the different MUDs. Even experienced MUD programmers may learn

something new!

xvi Secrets of the MUD Wizards

1OB®DHOOOHHHHHGHVOOOHHHHHVRHVWIOGHHHHHV VCASH OE

The Appendixes
The appendixes contain a MUD directory, a glossary of MUD terms, a list of MUD clients,

and a list of available servers.

The Terminology of the Book
This book uses several different fonts and boxes to differentiate ideas that are introduced.

This segment will explain the various things you will want to watch out for.

Text and Fonts
Certain special fonts and text are used to differentiate certain commands and screen

images.

This format is used to introduce new MUD commands. It includes the MUD command,

an explanation, and syntax for that particular command.

Notes are used to introduce ideas of special interest and to explain ideas in more detail.

Notes also are used to set apart the explanations of things that happen in large “virtual

tours,” which use many examples that come straight from a MUD.

Tips separate and highlight information that is designed to help players perform better.

They are focused primarily on combat MUDs.

Warnings are used to call your attention to actions that can be dangerous. Warnings also

are used to caution you about certain material that may be offensive.

Shadowed monospace code indicates sample sessions taken directly from a MUD.

Introduction xvii
®9ODGHOLQSHHHHHHHOHOHHHOHHOHOOOYOHHOHHOOOOOOO

Icons
Throughout the book, several icons are used to designate areas of interest to a specific
segment of the readership. For example, you will find there are many different types of
MUDs and that you will focus on only one or two of the different types. Icons are used
to set up the information that pertains to the topic designated by the icon.

LP This icon designates that what follows is relevant specifically to LPMUDs.
MUD

DikU This icon designates that what follows is relevant specifically to DikuMUDs.

mee This icon designates that what follows is relevant specifically to MOOs.

MUSH “his icon designates that what follows is relevant specifically to MUSHes.

MUCK = This icon designates that what follows is relevant specifically to MUCKs.

Conventions Used in This Book
The following typographic conventions are used in this book:

M Code lines, commands, statements, variables, and any text you type or see on

the screen appears in a computer typeface.

@ Placeholders in syntax descriptions appear in an italic computer typeface.

Replace the placeholder with the actual filename, parameter, or the element it

represents.

@ User input appears in bold monospace. This represents text you type.

@ Italics highlight technical terms when they first appear in the text and some-

times are used to emphasize important points.

= _ ss 7

a) i 7 - 2 <—-

7 — Mapes _ aaa -— 7

eae ees ee sone

by a Aes eae a |

ine cer ee

facial al? FP beet 2n0l
ss Pann Hh es

) oOas Oa - ™ (iSham SWelstae ———- ef

’ 2 Ae a ee Lo bee ‘=

ae ip UPD On WT O
j-—— 6% / - ye oe P)

PART

INTRO@DUCTION Te
MUDs AND MIUDDING

Chapter 1

Introduction to MUDs

Chapter 2

MUD Basic Training

Chapter 3

Your MUD Persona and Role-Playing

Chapter 4

Connecting to MUDs

as =

y pieQUil ava 20 he = ts 7

7 Se
er a ry

. aes PS

a

CHAPTER

INTR@DUCTION Te MIUDS
MUD is an acronym for either Multi-User Dungeon or Multi-User

Dimension. Although there are many different kinds of MUDs, this

book concentrates on the five most popular kinds of MUDs. They are
as follows:

LPMUD—[Lars Pensj! Multi-User Dungeon

DikuMUD—Datalogisk Institut Koebenhavns Universitet

(Department of Computer Science, University of

Copenhagen) Multi-User Dungeon

MOO—MUD Object Oriented

MUCK—This name is taken from MUD, but it has no particu-
lar meaning.

MUSH—Multi-User Shared Hallucination

Although this book focuses on these five different types of MUDs, you

will find that much of what the book teaches you can be applied to any

MUD-like system. This book also includes lists of some sample MUDs

on the Internet and their descriptions. You get tips for playing and

programming MUDs and receive some insight into the uses of MUDs.

You also learn about other systems on and off the Internet that are

related to MUDs, such as IRC (the Internet Relay Chat) and commercial

multi-user games that resemble MUDs.

4 Part! © Introduction to MUDs and MUDding

DODDDOOHOHOHHHHDD HD GOGHGHHHGD B@ QGP SHBPISBIOVSBBSOVIGS¢

MUDs have become a steadfast part of the Internet as an outlet for fun and socializing.

Rivaled only by IRC, MUDs provide the leading forum for real-time interaction on the

Internet. In “real-time” interaction, the user can interact with other users immediately.

This interaction is different from e-mail and netnews (Usenet), which offer users the

opportunity to interact with each other but with time delays. E-mail and news are the two

most common uses of the Internet because they are accessible via the major online

services. With e-mail and news, the user must wait for a reply to messages. This means that

correspondence can have delays of days or even weeks, depending on when someone

chooses to respond, although once a response is sent, it usually takes only minutes or at

most a few hours to reach its destination.

In today’s world, everybody wants instant gratification. On MUDs, users talk to each

other, and their correspondence is relayed in milliseconds—nearly as fast as your voice is

relayed during a phone call. Correspondence is limited only by the typing speeds of those

corresponding. The only other Internet services that are easily accessible and that provide

real-time interaction are the talk command and IRC. The talk command does not offer

the opportunity to meet new people. It functions only as amechanism for two people that

already know each other to communicate—much like a phone call. IRC, on the other

hand, is a veritable medley of people talking about every imaginable subject. Averaging

over a thousand users at any given time, IRC covers a broad spectrum of topics. However,

IRC is organized loosely, having different channels that focus on predetermined topics.

MUDs, on the other hand, create a virtual world where the users or players can interact

with each other, wander on their own, and talk one-on-one. When logging in toa MUD

for the first time, you choose a name (usually not your real name) for your MUD character.

When on a MUD, you have a virtual body. You can give this body any name and any

description; you create your “persona.” Your new MUD character doesn’t have to be you.

In fact, you have the power to create and live a new life. You can assume any personality

you like, but more on this in Chapter 3.

The Internet contains hundreds of MUDs, and they are nearly all distinct in one way or

another. Therefore, this book has a huge amount of material to cover. This book covers

topics of interest for the novice and the expert.

Different Types of MUDs
Some of the terms used here will become more familiar as you read. Many are covered in

much more detail in Chapter 3, but because these definitions are helpful throughout the
book they are introduced here.

a

Diku

Mee

MUSH

MUCK

Chapter 1 ¢ Introduction to MUDs 5
SPOGOGOSSH 9 GHGS H GSS SO 9 9SSSHHHSSS9HSSHHSH0OO9 GS9GH9SO08 009

@ Combat MUDs are MUDs that have built-in systems that support combat between

players and monsters. Combat MUDs make up a large portion of the MUDs.

Monsters are creatures the computer controls and that fight with characters the

players control. LPMUDs, DikuMUDs, and some MUSHes, fall into this category.

@ Social MUDs are those MUDs that do not have a built-in gaming system like

those found on Combat MUDs. MOOs, MUCKs, and most MUSHes, also fall into

this category.

LPMUD is a type of MUD that uses a built-in combat system and has a particular

look and feel to it that you will learn to identify in the next two chapters. There

are more LPMUDs than any other type of MUD. Many LPMUDs have a fantasy

orientation, but because they are very modifiable, they have been adapted to
many other genres. Only wizards can program or create objects on an LPMUD.

This type of MUD is covered in much more detail in Chapter 8 and program-

ming LPMUDs is covered in Chapter 13.

DikuMUDs are another form of MUDs that have a built-in combat system. They

are similar to LPMUDs, but with less flexibility for development but (arguably)

better combat systems. DikuMUDs tend to be fantasy oriented. Only wizards can

program or create objects on a DikuMUD. For more information about

DikuMUDs, see Chapter 9.

MOOs are primarily social MUDs in which players tend to hang out and chat. In

general, every MOO user is allowed to create objects within the MOO, so many

people go to MOOs to create. LambdaMOO is probably the single most popular

MUD on the Internet. MOOs are covered in detail in Chapter 7 and program-

ming MOOs is covered in Chapter 15.

MUSHes and MUCKs are very similar and share many qualities with MOOs. All

three were derived from the same originial source—TinyMUD. Some MUSHes

have been modified and turned into combat MUDs, although they have a

different feel than that found on the more traditional combat MUDs (LPMUD

and DikuMUD). On many MUSHes and MUCKs, players are allowed to create

objects, although sometimes special permission is required. Generally, MUSHes

and MUCKs are social MUDs; however, they often have a tendancy toward more

in-depth role-playing. For more information about programming MUSHes and

MUCKs, see Chapter 15.

Before jumping into the thick of things, | want to give a word of caution. MUDs are

extremely addictive. There are very few things that are as psychologically addictive as

MUDs. This addictiveness is discussed at greater length in the book. Before you start

MUDding, you must realize that the potential for addiction is there. For more informa-

tion, see the section called “Addictiveness” later in this chapter.

6 Part! © Introduction to MUDs and MUDding

€1DDWOHOHOHHHHHDD O9OOVHGHHDD BQQGHGPGID BD VIOOGOSE

What Is a MUD?
A MUD isa form ofa virtual world. While MUDs do not yet have the glamorous graphics

of virtual reality, they do have their own allure that is just as unique. MUDs weave a virtual

world around the user by providing a first-person perspective of one’s environment.

MUDs lack the graphical appeal of other user interfaces, but most people can easily grasp

the MUD user interface because it’s like reading a book.

Following is an example of a MUD conversation:

John says, "Hey, what's up?"
Helen says, "Not much. What about you?"

Helen smiles at John.
John says, “I'm fine."
John smiles at you.
John says, "You must be new. Hi, I'm John."

John shakes hands with you.
Helen says, “Don't worry, you'll get used to it."

Helen pats you on the back.

Notice that it’s as if the whole conversation is from your perspective. Following is how

John sees the conversation:

You say, "Hey, what's up?"
Helen says, "Not much. What about you?"

Helen smiles at you.
John says, “I'm fine."

You smile at Newbie.
You say, "You must be new. Hi, I'm John."

You shake hands with Newbie.
Helen says, "Don't worry, you'll get used to it."

Helen pats Newbie on the back.

In the preceding conversation, you are given the name Newbie. On MUDs, a newbie is anew

user. It’s similar to using “freshman” or “frosh” as the name for a new college student. In

the conversation, John is also experiencing the conversation from a first-person point of

view. Each person on the MUD sees the world from his or her own perspective.

You can use MUDs in many ways, but this book focuses on using them for entertainment.

However, MUDs are beginning to be used in schools as a learning and social tool, and

growth in this area is likely to continue.

Combat MUDs, which usually are LPMUDs and DikuMUDS, have a framework for gaming

built into them; MOOs, MUCKs, and MUSHes generally don’t. A typical combat MUD

world is inhabited by monsters of all kinds, and the players travel around the world slaying

Chapter1 ¢ Introduction to MUDs 7
Q@QQVQPDOGHGOHOLHOHDOSGHOGHGHOOHHDOSGHOHGHOOSHSHHHHOHHOOOOOE £3 Ss

these monsters for treasure and experience. By accumulating experience, players can

advance to different levels and learn new skills, allowing them to kill even larger monsters.

Players can often choose to be a mage (a type of character that can use magic), priest, fighter,

thief, or any number of other roles. The role that players choose varies widely depending

on the individual MUD. This topic is discussed in much greater detail in Chapter 3.

When you log in to a MUD and wander around, you are likely to encounter other users

who are also wandering about the virtual world. You may pass people on the street or meet

them in a store. Meeting other people leads to quite a bit of social interaction, such as users

teaming up to kill monsters together, people getting “MUD married” (more on this in

Chapter 6), and just general conversation. Because no one can see you on a MUD, people

are more willing to talk to total strangers. It’s pretty safe to talk to someone through miles

of wire. Unlike in real life, on MUDs it’s more acceptable to just walk up to people and start

talking to them. All of these factors lead to a much greater level of interaction and overall

fun on MUDs. Lots of interesting conversations can spring up.

Two components on many MUDs are players and wizards. Players make up the majority

of users on most MUDs. A player is the basic MUD user. He or she can move through the

MUD, interact with other users, and, on combat MUDs, kill monsters. The second class

of user is the wizard (also known as administrator, builder, god, or elder). Wizards have the

ability to create monsters, rooms, and objects. Wizards can alter players and can affect the

MUD world in any way they want to. On some MUD derivatives, like MOOs, all users can

build new objects; but on most MUDs, this capability is restricted to wizards.

Why MUD? e
People “MUD” for many reasons. The allure of creating one’s own world, or even just

living in a world with different rules, can be immense. Politics, adventure, and the brave

new world are great attractions. People like the fact that they can spin a new reality or shed

the boundaries of an everyday world.

In the MUD world, no one knows whether you are rich or poor, black or white, male or

female, and all the encumbrances of the real world are gone. However, if you change the

reality that is you too much, you may find yourself in a web you cannot spin your way

out of. Many find this fine line between reality and the virtual world to be the most

important draw for them.

Because all MUDs have politics, you can be pulled into the political aspects of MUDs. The

politics of LPMUDs often relate to how powerful players are within the game atmosphere

and their ability to organize others into groups that may feud or work together. Most

MOOs have something called the Architecture Review Board, which oversees new real estate

and much more. In fact, LambdaMOO (the most well-known and populated MOO) has

developed its own governmental system. For example, this system proposes referendums

on important issues, and the populace may vote on them.

8 Part! ¢ Introduction to MUDs and MUDding

GHDOHOHOVOHOHGHDHVOOEHGHHHDBWOOHGHOHIHDD OW VOOSGHOHID VIO BBOOIIGE

On combat MUDs (MUDs that have a built-in game system, similar to role-playing games

like Dungeons and Dragons), there are many more reasons to play. On these systems, you

can build up a character and expand his or her abilities as you play, thereby becoming

more and more powerful within the game. Some people enjoy this power for the sake of

advancing; others want the power to kill creatures in the MUD on a whim. Still others

desire the influence that being powerful gives them over other players. Some people just

like to hang out and talk.

Hanging out? That seems an odd thing to do online, but MUDs are good places to meet

people. While it may be hard to walk up to a stranger in a bar, it’s very easy on a MUD.

All conversations and meetings between MUDders is easy, both male and female, platonic

and romantic. Everyone expects random conversations and weird things on MUDs, and

no one has self-confidence problems. It is easy to talk online—especially on MUDs.

MUDs are like theme parks; they come close to being the theme parks of the Internet.

Disney World and Six Flags take us away from reality into a variety of re-created worlds

with their own themes. MUDs provide the same function on the Internet by breaking the

monotony and the everyday humdrum of e-mail, FTP (the file transfer protocol used for

transfering files on the Internet), and even the World Wide Web. MUDs break the

monotony with interaction, the cability to chat with others, and the ability to escape into

an imaginary world.

Whether that world is taken from a book like Anne McCaffery’s Dragonriders of Pern or

Robert Jordan’s Wheel of Time, MUDs provide a wide variety of environments that can’t

be duplicated or visited any other way. These wonderful worlds, combined with a vast

array of accessible people, come together to make MUDs a very great place to visit (and

for some, a good place to live)...which leads us to the issue of how addictive MUDs can be.

Addictiveness
As I mentioned at the beginning of the chapter, MUDs can be very addictive. This section

discusses some of the reasons that MUDs can be so addictive. Knowing why MUDs are

addictive may prevent you from becoming addicted yourself. (I know, it can’t happen to

you. We’ve all said that before.) Following are the reasons that I think MUDs are addictive:

@ Social Forces: This reason is pretty simple. You meet a bunch of people online,

and you end up talking to them for a long time. It seems boggling, but it is really

that simple. This effect can also be observed in the college environment. In

college, groups of people stay up talking about things until ridiculously late

hours, often because the conversation is interesting and no one wants to leave.

People may not want to leave because they want to give their opinions, the

conversation is just too interesting, or perhaps they think it may be rude to

leave. It is impossible to understand this concept until the first time you see the
morning sun come through your window after MUDding all night.

Chapter 1 ¢ Introduction to MUDs

©9QVBOSSOSS SHB VSHHHS S008 9SHSS9HOG08 OOGE

@ Political/Competitive Reasons: Often (primarily on gaming MUDs) there are

several new players on a MUD at any given time, and these players tend to bond

into a group. This group then develops into a sort of political organization

(informal) with its own motives. Perhaps a couple of players in the same class or

guild start working together on a regular basis toward some goal. This group goal

drives everyone involved to be on the MUD constantly so they can possibly be

the leader of the group. Members of the group also stay on the MUD to make

sure they remain equal in level and status to everyone else in the group.

& Temporary Drive: This temporary drive happens at different times and keeps

you online for more time than you expected. An example of this is that when

you die on most MUDs, you lose a lot of your experience points and generally

get mad. Then you decide to stay on the MUD until you regain all the experience

you've lost. More often, you manage to get an incredible weapon or piece of

armor you can’t bear to lose, so you keep playing until you pass out. The same

thing can happen if someone significantly more powerful than you starts

helping you. It becomes much easier to advance, so you want to stay on as long

as the person helping you continues to help you.

Is MUDding a Game or an Extension of Real Life with Gamelike
Qualities?

It’s up to you. Some jaded cynics like to laugh at idealists who think that MUDs are

partially for real, but we idealists think they’re not playing right. Certainly the hack-n-

slash stuff is only a game, but the social aspects may well be less so.

Summary
Now you have a little bit of an idea of what a MUD is and how it works...and even why

you may want to play one. You also know how the book is formatted. I wish you luck with

your adventures into these new worlds called MUDs. The rest of the book provides you

with the tools you need to get started on MUDs quickly and to be successful in whatever

you hope to achieve on them.

pms ; : "aa < an — arn :

a ee eee

® oat, oom die he eas = : a

7 _ tee diedent aire ane oti

nena uy or a : w,

_ ak Ga ¥ =
——————— = .

me needs / = Mite
J. - ad fos RG =e li} rar aay S

CREP BPS 1 ee ee oe
| MPLS C2.) 12° oR? AHA Y

om o> -0e) ei or) One
ee eee ee

’ 22 aan Ta

0d og i? Wee shi A ete

ad igtanwed hatte} Tene A thoes aart
ri ij tap Oat), VANS adele oe ser ole

eS 0590 006 Sie : 2 oh Se ap

i wb ene tees
nit > 7 - +The, ©

: riiw = ae

7 ea) a aie

= *h)=<jesP ats
> Sew > ean ee

. oe = @ig

ya ig?

ate w

‘= e9.Alu ier ge « AboE

phy ay 2de

ey
a1 ae

CHAPTER

MUD BASIC

The purpose of this chapter is to run through the basics of MUDding.

This entails showing you how MUDs work, the basic interface that

MUDs use, and an introduction to basic MUD commands. This

chapter focuses primarily on teaching you how to navigate MUDs and

gives you an idea of how MUDs work. The commands for interacting

with other players are covered in Chapter S.

So prepare to enter MUD boot camp, where you will get your feet wet

as you learn the secrets of navigating MUDs!

Using a MUD
If you have ever played a text-based adventure game such as the classic

Infocom games (Zork, for example), you immediately will be familiar

with the basic interface MUDs use. Because MUDs have no graphical

aspect, they use words to convey the virtual worlds they portray.

12 Part! ¢ Introduction to MUDs and MUDding

DOO®QOOHHOGHHH D9 O99 GHGS9FBVVVSHGISIBIIOSOOSBE

Diku

Mee

MUSH

MUCK

The smallest unit of MUD geography is the room. Imagine a piece of graph paper and then

imagine each box as a room. This is the way a MUD works. You move from box to box,

encountering when you enter it whatever else might inhabit that square. Because of this,

it is easy to map a MUD.

Prompts: When Do I Type?
Because you probably will interact with MUDs on a regular basis, it is important to know

when you can enter information and what the MUD might be doing. Because different

types of MUDs deal with user input in different ways, this section briefly covers user input

before showing you how the MUD world works and how to navigate through it.

In MS-DOS you often see the c:\> prompt (or something similar), and in UNIX you

probably see the *. When you see these prompts, you know that you then can enter a

command. If you use the DIR command in MS-DOS, for example, you will see the directory

of files. When it has been completely displayed, you return to the prompt and can enter

another command. Because MUDs are interactive, they do not work in quite the same

way; you could receive information from another source that acts while you are waiting

at the MUD prompt. MUDs handle prompting and the entering of commands differently

than other software you may have used. In fact, some MUDs have no prompts.

LPMUDs handle prompting in the most simple way. They provide a simple > prompt. At

the > prompt, you can issue the commands you want, then MUD will execute them.

However, if you are not typing anything, it is entirely possible that you will see other

messages from the MUD that appear onscreen. When this happens, you do not receive a

new prompt. Because you received the prompt earlier, you can issue new commands at

any time.

Some DikuMUDs use the basic > prompt that LPMUDs use, while others use a more

detailed prompt, such as < 47Hp 88Mn 87Mv >, which provides up-to-date statistics on your

character. DikuMUDs differ from LPMUDs in that their prompts are updated every time

you receive information, such as someone in the room says something or you receive a

tell or message.

MOOs, MUSHes, and MUCKs do not have prompts. You just type and your requests are

processed by the MUD. (Sometimes, especially on very crowded MOOs, there will be

several seconds of delay between your command and its results.) Occasionally you may

even enter several commands in advance of the commands that are being executed.

Navigation: Moving Around on a MUD
For moving from room to room, MUDs use the cardinal directions—north, south, east,

and west. Rooms also use up, down, northwest, northeast, southwest, and southeast.

Some subset of those 10 directions make up the exits for any given room. Because

directions are used so often, you can use abbreviations.

Chapter 2 ¢ MUD Basic Training 13
QQW@OSOGOGGOOQSDHOHGHHHOOVHHHHHHSOOHHHGHOGHHOGOOOS

The following is a list of the standard MUD directions and their abbreviations:

45 down d

east e

north n

northeast ne

northwest nw

south S

southeast se

southwest sw

up u

west Ww

These abbreviations are not case sensitive. You can use upper- or lowercase letters.

Although these are the standard directions, rooms are not bound by this small set of

directions. Many rooms have different directions, with exits such as portal or nexus, and

are explained in the description of the room and listed among the exits. When alternate

exits appear, there usually, although not always, is a reason for them. So watch for clues

in the room’s description, contents, and in neighboring rooms.

This chapter has many images of MUD rooms, players, and other MUD components.

Because they are taken from an LPMUD, there may be minor differences among them

and what you might see on other types of MUDs. The differences primarily are cosmetic,

and the examples used here should be generic enough to be valid on most types of

MUDs.

The best way to learn how rooms work is to see them. Following is a brief tour of a small

section of a MUD:

You are on a bridge crossing a frothy river. To the north there appears to be a

small town. Far off in the distant forest you see a gothic spire rising into

the sky.

There are two obvious exits: south and north.

The fact that the preceding line says obvious exits does not necessarily mean that there

are hidden exits. There could be hidden exits in any room, but they likely would be

addressed or hinted at in the room’s description. The use of the obvious exits format has

become standard practice on many LPMUDs. Other MUD types may use other ways to

describe exits. Examples of room formats from other types of MUDs are discussed in

detail, later in this chapter.

14 Part! © Introduction to MUDs and MUDding

DDOWOQOOOHHHHGHHDHHOHHOHDID BY OGOGHGDPIDISSOGS

A large open plain. There is a river to the east and some kind of building to

the
west.
There are two obvious exits: west and east. The river also winds north and a

bridge crosses it there. A SIGN: URGENT, READ IMMEDIATELY!.

>n

The sign in the preceding room actually is an object in this room. You can look at it and

read it. Watch for objects like this in rooms as you explore on a MUD.

You can look at this sign, which will show further information, revealing the information

on it. The URGENT message is just a ploy by one of the MUD’s wizards to attract players

into this area of the MUD and to add a little character. Its message is a plea for help, and

in the real world, this plea would be considered important, thus the use of the word

URGENT.

You are on a bridge crossing a frothy river. To the north there appears to be a

small town. Far off in the distant forest you see a gothic spire rising into

the sky.

There are two obvious exits: south and north.

Son

As you can see, after going south and then returning north, you have ended up in the

same place. This particular area upholds a logical sense of space and reality. Some areas

may not.

You are in the southern part of a small town. To the west is a strange store.
Little demons keep running out of it carrying small packages. To the east there

is an ancient library. There is more of the town to the north.

There are four obvious exits: south, east, west, and north.

A bulletin board.

>on

You are now in the northern part of the town. To the east is a small trading
post. To the west is a strange building with a large domino over its door. To

the north you can still see the gothic spire breaking into the sky.

There are four obvious exits: east, west, south, and north.

Chapter 2 ¢ MUD Basic Training 15
@QVDOSOHHYHOLQIHGHHOHGHH HOV HGHGHHSHOOOHHHHHSHOHOOOOSOE

You are at the edge of the small town. To the north the spire draws your

attention.

The town is back to the south.

There are two obvious exits: south and north.

Azatoth the Master of Dragons (Mortal).

>n

In the room just shown, you see Azatoth, a player. This is how players will appear when

you see them in aroom. You can recognize him asa player (rather than a monster) because

of the (Mortal) next to his name. Different MUDs will differentiate players and monsters

in different ways. Some MUD types, such as MOOs, MUSHes, and MUCKs, usually do not

have monsters.

The sounds of the town leave you quickly as you find yourself suddenly in a

very dark and gloomy forest. The spire draws you towards it.

There are two obvious exits: south and north.

>n

You are in a very dark and gloomy forest. The spire draws you towards it.

There are two obvious exits: south and east.

An Imp.

>e

The Imp in the preceding session is a monster. He is just like all of the other objects, but

he can hurt you. If you attack him, he will defend himself. Often monsters will start with

A, An, Of The, as opposed to players that rarely start with this way. But again, itis not always

easy to differentiate players from monsters.

The forest seems to be thinning out here. To the east you see the rest of what

is attached to the gothic spire. An ancient, huge cathedral stands before you.

The entrance to the cathedral is to the east. The large double doors that used

to mark its entrance have long since decayed. Above the frame of the doors is a

seven rayed star, the symbol of chaos.

There are two obvious exits: west and east.

16 Part! © Introduction to MUDs and MUDding

DD DO®OHOEOGHHHHOHDDOGGHHHHHDVDPIOOGSHGHHOHY DQPOGOSHHVVOOOSE

> e

You have stepped into the eerie cathedral. Many of the vestments of a church

are strewn about. Most of what has not completely decayed is of a purple or

green hue.

To the east you see a large dias. On it is a huge statue that seems very
menacing in the shadows here. You also hear a frantic chanting that seems to be

coming from the dias.

There are two obvious exits: west and east.

>e

On the dias are several strangely dressed clerics dancing around a swirling
vortex of chaos. You think you could run past them into the vortex without them

being able to stop you.

There are two obvious exits: west and vortex.

A strange looking cleric.

A strange looking cleric.
>

As you can see in the preceding room, there is an exit called vortex. Although many MUDs

use the basic directions for navigation, occasionally there are exceptions. There also are

MUDs that do not rely on the basic directions at all.

As you can see from that brief MUD tour, a MUD contains many different components.

The key to understanding MUDs is the concept that all the pieces are objects. The sign and

the bulletin board you saw in the preceding rooms, for example, are objects. If you want

to see what they look like, you can use look at sign Or look at board.

look or 1 show your surroundings.

look at <object> gives you detailed information about the object. This commonly is
called the object’s long description.

Some MUD types do not require the at and others do. 1 and lo often are useful
abbreviations for look.

How do you know what to call the object? Every object has a name. This name also is

known as the object’s ID. Other players in the MUD have unique IDs—their name. You

can use a player’s name to talk specifically with him or her or to see if he or she currently

is playing. Non-living objects in the game also have IDs. The bulletin board’s ID is board,

SO look at board and read board will allow you to use the object. These IDs also are case

insensitive, thus you could use look at tarod Or look at Tarod, even though Tarod is a proper
name.

Chapter 2 ¢ MUD Basic Training 17
Q@QODDDOGHHOGHOOVIYSSHHHSOHOHHHGHHSHOOHHHHHGHHHHOHOH HOS

Notice the read board command. This command is not an official command, meaning

that is not part of the MUD itself and will not work in all cases. Rather the read command

is defined in an object—in this case the bulletin board. With commands like this, the

command will only work if you are in the same room as the object or you have the object

in your possession. You will find that there are many commands defined in this way. You

usually can find out which commands are available on objects by looking at them or by

using commands that can be logically deduced, such as reading a book (or bulletin

board) or digging with a shovel. Not all objects have commands associated with them;

however, many do. MUDs do not always do a good job of differentiating these objects,

but if you think the object is more than decorative, you might try a few commands that

relate to the object and see what happens.

Some objects may respond to several names. The Imp, for example, may be known as Imp,

Monster, Or Devil. You usually can determine an object’s name from its description or

appearance. Generally, when interacting with another object, the name you will use will

be one word. The strange looking clerics can be viewed with look at cleric, but not look

at strange looking cleric. This is the case on most MUDs, although some may allow you

to use the full name of the object.

This use of IDs is oriented toward LPMUDs and Dikus because the object is created with

a single name, and then with several aliases, and a full name. Thus, A strange looking

cleric has the name (or ID) of cleric, the full name of A strange looking cleric, and

possibly an alias such as monster or priest. MUSHes and MUCKs work slightly differently.

For example, A strange looking cleric would be matched by A strange, looking, cleric,

A str, looking cl, but not by nge looking.

Throughout the course of this book, you will learn many new MUD commands. These

commands function much like the look command and may require you to use an object’s

name. So remember, the ID or name of anything you see is likely to be the most obvious

word in its description.

Now you know the significance of objects in the game and how they work from a player

perspective. The next section details how objects work within the game. Although this is

a little more technical, it can help you understand the basic reality of MUDs.

How MUDs Work
When you use a MUD, you are entering a virtual world. That world has a structure and

framework just like the real world—only the rules are different. MUDs don’t start on a base

of molecules—they build from a base set of objects. Objects are pieces of computer code

that have specific tasks. The objects inside of a MUD have been programmed to interact

with each other in various different ways. While the number of possible objects is nearly

infinite, we can examine several of the most basic objects.

18 Part! © Introduction to MUDs and MUDding
DO @ODOOHHOHHI D9 OHOGHGHGHGG 9 OHO OG 9G9G9 BOO VOSS 9SSE

The player Object
The player object is one of the most important pieces of the MUD. When you log in, you

are assigned a player object. That player object then copies all the saved information about

your character into itself, thus molding to that identity. In fact, often times when you

connect to a MUD, you will see Connecting to obj/player... or another similar message.

This is because on many MUDs, the login process is even a part of the player object;

however, on many newer MUDs you will see this message after you log in.

The player object has many different functions that vary widely from MUD to MUD. At

the core, however, the player object is your virtual body. People can look at you (your player

object) and you can look at them by using the look command.

What is to follow is taken from an LPMUD and is highly MUD specific. Again, it is

explained and shown here as an example of what you might see. If you are standing in

a room with several other players and type look at tarod, you will see the following:

Chaos Lord Tarod the Wizard (Wizard) (male) (elf).

Tarod is a tall, gaunt elf with solid black hair and glowing green eyes.
Tarod has a scar on his right leg, his left arm, his right arm, his forehead

and his left cheek.
He is in good shape.

Tarod wears the gray robes of a Mage.
Tarod is carrying:

torch.

stone cutter sword.

frost sword.
torch (lighted).
Magical Full Plate (any) (worn).

Holy Avenger (wielded).
Magic Shield (any) (worn).

The preceding information is collectively known as Tarod’s long description. Look at the

different types of information you have after looking at Tarod.

Chaos Lord Tarod the Archmage (Wizard) (male) (elf).

The preceding is Tarod’s short description. The (male) (e1f) is part of his overall description

rather than his short description. The rest of what you see is his short description, which

is what you would see if you walked into a room where he was standing, such as the
following:

Chapter 2 ¢ MUD Basic Training 19
)PDODOLOlDSOGHGHOHLlQIOHGHOHHGOOHHHGOSHOOOO HOOK

The forest seems to be thinning out here. To the east you see the rest
of what is attached to the gothic spire. A towering, ancient cathedral stands

before you.

The entrance to the cathedral to is to the east. The large double doors
that used to mark its entrance have long since decayed. Above the frame

of the doors is a seven rayed star, the symbol of chaos.

There are two obvious exits: west and east.

Chaos Lord Tarod the Archmage (Wizard)

To find out whether he is a male elf, you would have to look at him. The following is the

next piece of information in the long description of Tarod:

Tarod is a tall, gaunt elf with solid black hair and glowing green eyes.

This is the description that was input when he used the describe command.

describe <description> adds a description to your player object. You may have to work

with this for a little while to achieve the results you want. Look at yourself (look at <your

name>) to see the results. Some MUDs insert your name at the beginning of what you type

for <description>, and others do not.

The way descriptions are set can vary widely between MUDs. The preceding syntax is for

LPMUDs. DikuMUDs have a special set of login options, one of which allows you to set

your character’s description.

Ona MOO, you would use @describe me as <description>, and on MUSHes and MUCKs

you would use @desc me=<description>.

This particular MUD inserts the player’s name and adds a period to the end of the

description that the user enters. This type of description almost always is optional and

only serves cosmetic purposes; however, it can differentiate your MUD character and

project his or her MUD persona.

Tarod has a scar on his right leg, his left arm, his right arm, his forehead,

and his left cheek.

He is in good shape.

20 Part! ¢ Introduction to MUDs and MUDding

G9VQOOHHHOHHHHVQPIGHHHGHHHD VQPQOHHGHIIVVOVVGOSO

The scars indicate the number of times Tarod has died. On LPMUDs, every time you die

you get a scar. The way in which scars are assigned varies widely among MUDs and

generally is only cosmetic. The second line indicates that Tarod is in good shape. If Tarod

had just run out of a fight with a powerful monster, this line might instead be one of the

following (each of which indicates a different level of damage has been inflicted):

He is not in good shape.
He is hurt.
He is in bad shape.
He is in very bad shape.

On combat MUDs, these messages can be very useful. You can get a good idea as to how

close a monster is to dying by looking at them. He is in very bad shape. usually isa good

indicator that a few more hits will kill it.

The next line indicates that Tarod is in the Mage’s guild (guilds sometimes are referred to

as Classes). This is entirely dependent on the particular MUD—some MUDs do not have

guilds or classes. Although this line may have no specific relevance, it is important to

know there may be some variation among the long descriptions you see on different

MUDs.

Tarod wears the gray robes of a Mage.

Finally, you have reached the last part of the long description.

Tarod is carrying:
torch.
stone cutter sword.

frost sword.

torch (lighted).
Magical Full Plate (any) (worn).

Holy Avenger (wielded) .

Magic Shield (any) (worn).

The preceding shows Tarod’s inventory. The player object is a container for other

objects—it can hold them and use them as necessary. To see what you are carrying, use
the inventory command.

inventory or i gives you a list of the items you currently are carrying.

Chapter 2 ¢ MUD Basic Training 21
DQOQlDODSSHSOHOOHO IV GHHGHOOOVIYHGHHHHHOHOHH9HGHSHHOOH SOO

Notice that some items have next to them additional information in parentheses. The

(any) next to the Magical Full Plate and Magic Shield means that any size character can

wear that particular piece of armor. This MUD has several sizes of players, so some armor

is small, medium, Or large. Dwarves, for example, can only wear armor that is for size smal1

or for any size.

Not all MUDs use armor sizes. The second piece of information, the (worn) next to the

Magical Full Plate, simply means that Tarod is wearing that piece of armor. (wielded)

means that Tarod is wielding the Holy Avenger as his weapon. On non-combat MUDs,

wielding and wearing usually are not an issue except perhaps as an aesthetic addition.

There is one last concept that is important in the player object, although it is primarily

used on combat MUDs. Inside the game, the player object is alive. The player object is

living and has a heartbeat. The heartbeat is not like ours; it doesn’t pump blood, and if

the heartbeat stops, it doesn’t mean you are dead. In fact, it is kind of like a heart attack—

if you get any messages that indicate you do not have a heartbeat, you should contact a

wizard to correct the problems.

The concept of a living player object is very important in a combat MUD because there

would be no challenge or risk if you could not die. If you run out of life (by whatever

measure the particular MUD uses—usually hit points) you will die. Death can mean a

variety of different things, depending on the MUD you are on. On combat MUDs,

however, death is bad.

The player object is not the only living thing on most MUDs; usually monsters also exist.

These monsters are responsible for most player deaths. Players sometimes are allowed to

kill each other as well, but that is a whole new can of worms that is addressed later.

The room Object
The second most important object on any MUD is the room object. The fabric of the MUD

is woven from various derivatives of the room object, and, once they are sewn together,

the end result is the virtual world. As you move about the MUD, you actually are being

transferred from room to room. Each room has been configured in a different way and

with a different appearance; but at the lowest level, they are all the same. The basics of a

room are its appearance, exits, and contents. An empty room looks like the following:

> 1
Village

This is a small little mountain village nestled in

heart of the Bridger mountain range. The mountains are

huge and breathtaking. Off to the east lies a pub and

off to the west lies the bank.

There are four obvious exits: north, south, east, and west.

22 Part| © Introduction to MUDs and MUDding
99D OOO0GHO9998 OOOO G OHSS BB9GG9 HG SSO BOOS SSS99S06

The preceding room follows the standard procedure of listing the exits at the bottom of

the room’s description. Also, rooms often detail the exits as part of the room’s actual

description. A crowded room (full of players) looks a little different, as in the following

example:

aol
You are on the outskirts of the town. Short roads lead off to the south
and north. More shops can be seen to the east, and forest to the west.

There are four obvious exits: north, south, west, and east.
Backlash the Squire (Mortal).
Maquis the Squire (Mortal).
Enter the Master of the South Wind (Mortal).
Thalassa Mistress of the Outer Provinces (Mortal).
Black Hawk Naberius son of Galahad and Eliatra (Mortal).
A horse drawn Carriage waits here.
>

On LPMUDs and DikuMUDs, only wizards can build rooms. On other MUDs (especially

MOOs), a broader segment of the MUD population can build rooms. In the following text,

the term wizard means anyone who can build rooms within a MUD. Wizards configure

the first two parts of a room—appearance and exits. Sometimes wizards also configure

rooms to automatically load certain objects or monsters. The appearance is just a

descriptive statement that a wizard has decided is appropriate for this room, depending

on its purposes. Rooms in the same area usually are consistent and contain some type of

theme.

Exits also are defined by wizards, so it’s possible for weird things to happen. Most MUDs

have no internal consistency checks, so it’s possible that if you go east from a room 1 into

room 2, and then go west from room 2, you won’t end up back in room 1. These types of

problems are weeded out during testing, but if you run into a paradox like this, report it

to a wizard.

Finally you are to the contents of a room—the most important part. If you are standing

in a room, you are one of its contents. Most of the time, however, the computer is clever

enough not to show you as one of the inhabitants of the room (although I’ve had this
happen before).

=

The forest closes around you further still.
The air becomes moist and stifling...

The darkness till surrounds you!

There are two obvious exits: east and west.
A caru antler.

A Map.

Scroll of Identify.
Wand of Magic Missiles.
A Glowing orb.

Chapter 2. ¢ MUD Basic Training 23
8S SSO8SSSSSS9G6908 99996 G9 90808089959 SS0 0000006

Demonwhip.
Demon Shield (any).

Gothmog's ring (any).

In the preceding example, you see a room full of inanimate objects. In previous examples,

you have seen rooms that contain other players or monsters. You learn in the following

sections how to recognize different objects.

Room Variations
Other types of MUDs arrange rooms in different manners. Included here for reference are

rooms from the other types of MUDs (excluding LPMUDs, which have been used as

previous examples).

A Room from LambdaMO0O
mee The following is an example of a room from LambdaMOO:

The Living Room

It is very bright, open, and airy here, with large plate-glass windows looking
southward over the pool to the gardens beyond. On the north wall, there is a
rough stonework fireplace. The east and west walls are almost completely

covered
with large, well-stocked bookcases. An exit in the northwest corner leads to

the
kitchen and, in a more northerly direction, to the entrance hall. The door into

the coat closet is at the north end of the east wall, and at the south end is

a sliding glass door leading out onto a wooden deck. There are two sets of

couches,
one clustered around the fireplace and one with a view out the windows.
You see README for New MOOers, Welcome Poster, a fireplace, Cockatoo, The

Birthday
Machine, Helpful Person Finder, and lag meter here.

Lalysa, Yellow Guest, Forever_Guest, LAme-o (avoid disappointment - lower your
expectations), Cornelius, Cyber_Rogue (distracted), Bloodthorn, Pink_Guest,

Lecturer (a hard but fair marker.), and Quicksand are here.

A quick dissection of this room gives you three parts. The first is the description of the

room, which in this case also provides a clear description of the exits from the room. The

You see README ... and lag meter here. portion lists the inanimate objects in the room.

And finally, Lalysa, ... and Quicksand are here. lists the players currently in the room.

24 Part! © Introduction to MUDs and MUDding

DOOGQHOOSOHHHHHHDVHOGHHHHHDDDVSOOHHHGHGDSVOVISSOOSE

A Room from the Elite DikuMUD

Diku The following is an example of a room from a DikuMUD:

MUD

The Temple Of Midgaard

You are in the southern end of the temple hall in the Temple of Midgaard.

The temple has been constructed from giant marble blocks, eternal in

appearance, and most of the walls are covered by ancient wall paintings

picturing Gods, Giants and peasants. Large steps lead down through the grand

temple gate, descending the huge mound upon which the temple is built and ends

on the temple square below. To the west, you see the Reading Room. The donation

room is in a small alcove to your east.

An automatic teller machine has been installed in the wall here.

+Clara the Fairy Dark-Blade (linkless) is standing here.

Jahafir - Disciple of the Wolf God is sleeping here (Z2zzzzzz).

Adorable Odie the Minotaur Overlord/Overlord is standing here.

Tyr the Half-elven Sentry is standing here.
+The Priest is standing here, offering his services.

[Exits:neswd]

This room has a few more pieces. It begins with a short description of the room (The Temple

of Midgard) and then goes into the detailed, long description, which gives information on

the available exits. It then lists the animate and inanimate objects in the room. The

characters with is standing here or is sleeping here next to their names are players. The

rest of the objects are either inanimate or monsters. Finally, the room’s description ends

with a list of the exits.

A Room from the Dark Gift MUSH
MUSH = The following is an example taken from a MUSH.

Grant Street - 100 Block Downtown(#ORHJMhs)

Grant Street and Liberty Avenue Intersection

Presiding over the assemblage of glass, marble and steel that are the
stoically upper class buildings populating this oddly triangular intersection

is
the massive bulk of the Amtrak rail station, it's somber grey stones holding

aloft a sloping dome of a roof. Traffic, both foot and otherwise, runs north

and
south along the cobblestones of Grant St. here, always under the watchful eyes

of

the occasional stone gargoyle or angel adorning this office complex or that. If

you were to follow Grant far enough north through the urban canyon, you would

find the Greyhound bus station, but not before passing the elegant Vista
International
Hotel, posh and stately amongst the more modern structures here, no steel
to be found on its aged form, only stone and marble; the remnant of a different

time. Intruding upon the harshness and refinement of Grant is the asphalt of

Chapter 2 ¢ MUD Basic Training 25
©O8SSSSS99GO 998 9O9G9099 O98 9SSSS09008 0008

Liberty Avenue, a younger tributary of the cobbled road, leading to areas far

seedier
than- this.
You arrive at the intersection of Grant and Liberty, a busy intersection in

Down

town Pittsburgh.

Contents:

Kelby

Tomanelle

Teresa
Logan

Obvious exits:
Parking Structure (PS) Subway <SUB> Pittsburgh Employment Office (PEQ)

East <E> Southwest <SW> South <S>

This MUSH uses a system similar to the LPMUD examples, except that it specifically

separates the contents of the room with the Contents: marker. Everything from Contents:

to Obvious Exits: is a player.

A Room on FurryMUCK
The following is an example of a room on a FurryMUCK:

[Newcomers, type ‘behind' to get to a visitor's center for help adjusting to

FurryMuck. You should find yourself another home as soon as possible; type

'@link
me = #4498' to set your home to the Unicorn Inn, a temporary sleeping area.]

West Corner of The Park
This corner of the Park has a few shrubs and bushes. The main feature is a

huge wooden bandstand, painted white, and surrounded by a roughly fan-shaped

arrangement of wooden folding chairs for furries to sit upon while listening

to the band or just chatting. The lawn slopes down to the shore of the pond,

which is to the east.
The Park spreads to the north and south. There are trees to either of those

directions, the southern part having thicker woods with a narrow trail
meandering into them. To the west, you can see pavement and make out some

movement; you are looking at Cougar Boulevard. You can also see a narrow gap
between the side of the bandstand and the ground, letting onto darkness.

Contents:
Johnny

Gentaur
Dakka
MacPhisto

Jae.
Farin
Raster

Keyth

Hremp

Gaoth
Nightfall

Akaba
Ashtoreth

26 Part! © Introduction to MUDs and MUDding

1BBDDHOOHHHOHHDD QOOGOHHGHDHDWVHGOHOHHSSHDDVSOS SSO IOSE

Opal

Sandy .Claws
Silhouette

Lumpy
Bulletin Board

This MUCK details its exits in the body of the room description. It then groups all the

objects in the room under Contents:. Most of the items listed here are players, except for

Bulletin Board. It should be obvious which objects are players and which are not. If you

cannot tell, page the object and if it responds, it probably is a player.

Other Objects
MUDs and MOOs also contain objects that serve no real purpose. They do not uphold the

reality of the game, they do not house your virtual alter ego or someone else’s, and they

don’t pose a threat to your character. They are there purely for aesthetics and fun (or in

the case of combat MUDs, sometimes as an alternate form of money). The following is an

example of cosmetic object that is fun to play with, but serves no purpose other than

entertainment.

a
A magic ball.
> look at ball
An offical magic ball! throw <player> or kick <player>.

> throw striker
You throw the magic ball to Striker.

> smile
You smile happily.
You see a magic ball flying through the air.
The magic ball is swiftly thrown to Guest by Striker.

Guest jumps into the air and catches it.

You catch a perfect spiral thrown to you.

As you can see in the preceding example, the magic ball is a fun toy. Everyone else in the

room saw a character jump up and catch the ball when it was thrown back. It is possible

to throw the magic ball to anyone, anywhere on the MUD—there are no geographical

boundaries. The magic ball has no value—it can’t be sold and it can’t harm anything—

it is purely for fun. If you try to sell the ball, it will explode (not hurting any bystanders,

but ruining the ball).

Many other objects exist in the many MUD worlds, but they are diverse and there is no

set standard of objects. You will find that many non-standard objects have funny

idiosyncrasies, but most things work the way you would expect. If you find a torch, for

example, you probably will be able to light the torch and create light. Remember, you may

have to fiddle around to find the commands to use certain items, but often they are shown

Chapter 2 ¢ MUD Basic Training 27
2 O@BOOSOGHLDOPOHHOHOGOOISHOHHGHOHOHSHOOGHGHOGHOOOH OOO!

in the item’s long description (what you see when you look at the item). The magic ball,

for example, gives its usage instructions in the long description.

Here are some examples of commands you can use to manipulate basic objects.

> look at sapphire
A huge star sapphire.
> give sapphire to dartagnan

Ok.
Dartagnan smiles happily.

give <object> to <player> gives to a player in the same room with you the object in your

possession. In the preceding example, the character gives a sapphire to Dartagnan.

Dartagnan gives sapphire to Tarod.
> drop sapphire
Ok.
Zayas
A large open plain. There is some kind of building to the east.

There are four obvious exits: north, south, east, and west.

A Star Sapphire.
Dartagnan the Master Thief (Mortal).

> smirk
You smirk.
Dartagnan takes: A Star Sapphire.

drop <object> drops an object you have in your possession. The object will be in the room

you currently are occupying.

Dartagnan gives sapphire to Rosa.
Dartagnan leaves down.
Rosa drops the sapphire.

> get sapphire
Ok.

get <object> gets an object from the room you are in and puts that object in your

inventory (or your possession).

28 Part! © Introduction to MUDs and MUDding

GDOHOHQOHHHHHHHVYOOHHHHHHDVOVPHOGHHHDVOVSGOSGOO®

Special Items on Combat MUDs
Weapons and armor are critical parts of any combat MUD. If your character is not well-

equipped with the right supplies, he or she will die quickly. This section does not discuss

weapons in detail, but will touch on what they look like and how they work. Weapons and

armor are discussed in more detail in the chapters specifically relating to LPMUDs and

DikuMUDs.

Dartagnan takes sword from bag.
Dartagnan gives sword to Tarod.

=
Black catsword.

An old short sword.
> look at sword

This sword looks evil.
The sword is gold and black. You can see a

few runes imprinted in dried blood.
> look at sword 2
A rusty, old sword that looks like it might shatter at any time.
> say Your name is from one of the three musketeers, right?

You say, ‘your name is from one of the three musketeers, right?’

Dartagnan nods.

> wield sword
You wield black catsword.

Ok.

wield <weapon> enables you to wield a weapon that currently is in your possession. If you

get into a fight, you will be using the weapon (and any extra power it gives you) rather

than your hands.

>i
Black catsword (wielded).

An old short sword.

As you can see, the weapon now is marked as being wielded when this character does an

inventory. Also notice that when you look at other characters, you can see the weapons

they are wielding. Some MUDs may allow wielding in the right hand, left hand, or both

(this likely will be explained somewhere on the MUD). Don’t be surprised if you see

(wielded in right hand) after someone’s weapon.

Chapter 2. ¢ MUD Basic Training 29
@OOOVDEOHHHHHOOGQDSHHHHHHOOHHHHHGHHHHOHHHHHHOHHOOOHOOHO

> give sword to dartagnan
You must unwield your weapon first.

> unwield sword :
You unwield your weapon.

Dartagnan removes armor.
Dartagnan gives armor to Tarod.
> give sword to dartagnan
Ok.
> look at armor
This suit belonged to Ellefson, the protector of Mustaine.

It is very sturdy. It also emits light.
> give armor to dartagnan
Dartagnan wears glowing platemail.
Dartagnan gives armor to Tarod.

> wear armor
Ok.

wear <weapon> enables you to wear armor that currently is in your possession. If you get

into a fight, the armor will provide an added level of protection beyond what you

normally might have.

ZA
Ornate Elven Chainmail (medium) (worn).

When you wear armor, it, like weapons, is clearly noted for all to see. MUDs also have

different types of armor, such as boots, gloves, helmets, amulets, rings, and so on. You will

only be allowed to wear one of each of these types of armor. The different categories of

armor vary among MUDs. On this particular MUD, the armor is followed by (medium),

which denotes the size of the armor.

A dwarf cannot wear medium armor.

> look at armor

This is a nicely forged suit of Elven chain mail.

30 Part! © Introduction to MUDs and MUDding
1BODDOOOHHHHG GD 9OOOHOGHHGD GOO GHHGDSBIIVOOSOSBIBBOSOOSO

Summary
Because the world of MUDs is wide and varied, you probably will find a MUD (or several)

that you might want to call “home.” This chapter has explained the varied types of MUDs.

Remember that much of this chapter uses LPMUDs as a working base, and addresses the

many differences you will encounter when traveling to DikuMUDs, MOOs, MUSHes, and

MUCKs. These differences are further explored throughout this book, as each of these

MUDs has a chapter devoted to it.

I hope you have gained a feel for MUDs, getting the gist of how they work so that you can

better deal with the diversity when you encounter it. As you continue, you can focus on

sections of this book that relate to the type(s) of MUDs that you find most interesting.

Next, Chapter 3 shows you how to actually connect to a MUD.

CHAPTER

Your MUD PERSONA

AND ROLE-PLAYING

Part of the allure of MUDding is the capability it gives players to

indulge in the use of an alter ego that can be created on a whim or

deeply developed and thought out. This alter ego is the character a

player uses in the MUD world. Now, sometimes it is entirely possible,

and there are some MUDs that have this focus, that there is no

character, only a player. On these MUDs, it should be immediately

obvious that everyone is just himself or herself. On these types of

MUDs, people usually use their first name or a nickname. Because

these MUDs basically are an advanced chat system, they are not

addressed in this chapter.

This chapter instead discusses the ways in which you can develop a

MUD character for one of the MUDs that has a virtual world populated

by characters that are the alter egos of human players. Now, there is

nothing that says this character will not have all or some of the

player’s personality; but when the character's personality is the same

as the player’s, it still is different from a MUD without characters. So

now let us go forth and discuss this idea of a MUD persona.

32 Part! © Introduction to MUDs and MUDding

GODQOOSOHHOHHHHOOOOGHHGHHHDLQOGSSHHOGIDWDPOISSGHGHOI VIVO

Your MUD Persona
Most MUDs focus on some sort of role-playing. For a new user, this may be the most

difficult part of MUDing. Most people who play MUDs choose a name they will use on

MUDs (or sometimes just one specific MUD). This pseudonym is called a MUDname.

MUDnames often come from the user’s favorite books, movies, or TV shows, or are made

up. The MUDname usually becomes the genesis for a new persona. Your MUD persona

may act completely differently from you, which is the basis for role-playing. As you play

a MUD character, over time you will begin to develop that character in different ways. This

might mean that you just project your RL (real life) personality into the MUD world or that

you develop a completely new personality for your MUD character.

So how do you choose your MUDname and persona? On MUDs, I use Tarod, who is a

fictional character from a series of books by Louise Cooper. The Initiate, The Outcast, and

The Master tell of Tarod’s development from a boy to his ascension to godhood as one of

the seven lords of chaos. Iset my MUD character’s description to mirror the fictional Tarod

and then set about developing this character. I also let a lot of my real life personality seep

into this new MUD persona, thus, it is a subtle blend of my personality and a fictional

character.

I have seen MUDnames come from science fiction and fantasy books, mythology,

religion, rock stars, real names, and the imagination. Where you get your MUDname is

a personal choice, but consider it carefully because the name you choose can affect your

MUDlife. An interesting MUDname can attract unwanted attention. A final note on

MUDnames—keep in mind that just because you take your name from a fictional

character or a mythical being, you don’t have to adopt the personality of that character.

Following are a couple of other examples of MUDnames and where they are from:

Bleys Frank Stevenson, who is the author of Chapter 13, takes his name

from a character in the Princes of Amber series of books by Roger

Zelzany.

Moira Jennifer Smith, the technical editor of this book, takes her name from

Greek mythology. Her name is the singular word for the Moirae, the

Fates. In the singular, it refers to the overall randomness of the

universe.

A popular MUD pick-up line is “That’s a cool name, where did it come from?”

The most important thing to remember when on a MUD is that anyone you interact with

might be role-playing. You could spend hours talking to folks about different things and

in reality, they have no interest or have completely different personas. This is part of the

allure of MUDs; however, it also is a potential problem. While you can create the outgoing,

self-confident image you have always wanted, or be an evil, uncaring tyrant, you have to

be careful because occasionally (and I know, you'll say this can never happen to you) you

aye

Chapter 3 ¢ Your MUD Persona and Role-Playing 33
2 @OOOGODGHOWOVGSHGHGGHOGOEHHHHGHGHHOOOOHHGHSHGOHOHOOHIOHOO

become very close to people you meet on a MUD. Once you become close, it’s important

to make sure that the other people are really being themselves and not fictional MUD

characters. If you aren’t sure, ask. If you are only on the MUD for the game aspects, make

it clear to anyone who asks you personal questions that you are playing a character and

don’t want to talk about personal things online. Don’t be surprised if those with whom

you have spent months killing monsters suddenly become quiet if you ask them for their

real names.

Gender Relations
On the Internet, the majority of users are male. Although this rapidly is changing as the

Internet grows and becomes more mainstream, it still is the case as of the writing of this

book. This imbalance holds true on MUDs as well. A MUD with 50 users logged on most

likely will have about 42 male characters and 8 females. Because of this skewed ratio

between the two sexes, female characters tend to be showered with attention. New female

characters on gaming MUDs almost always are offered gold, powerful items, and help in

killing creatures.

Playing a female character certainly will make it much easier to get help from other

players, but it also has its drawbacks. Female characters tend to become magnets for every

uncouth male player on the MUD. This can lead to lewd comments, leering, and so on,

which can be very offensive. Be aware that MUDs tend to have the same problems as the

real world, and sexual harassment and rude behavior appear in virtual worlds as well. If

you are harassed or someone is being rude (such as making obnoxious innuendoes,

“kissing” you, and so on), ask them to stop. If they persist, complain to one of the

administrators. Most administrators will not tolerate this type of behavior and will

appropriately discipline offenders.

Another twist in all of this is gender bending. Because there are no rules for choosing your

MUDname and persona, many people may do things that surprise you. It is not

uncommon for men to create female characters—because of the benefits. Women

sometimes create male characters in order to avoid some of the potential problems of

playing a female character.

Role-Playing
When you enter a MUD world and assume your MUD alter ego, youno longer are yourself.

You are an actor in a scene with many other actors and actresses. Your role, however, is

not clearly defined by a script and you have complete artistic control. As you play out the

scene, you inevitably will interface with other actors and react to the roles they play.

The role you have chosen to play might be your own personality, it may be based on a

fictional character whose name you are using, or perhaps it is a completely new alter ego

that is not based on anything in particular. The more you use this role, the more this new

alter ego will grow and evolve. It may take on more of your real life personality traits or

it may become more unique as you allow yourself to be immersed in this fictional world.

34 Part!| © Introduction to MUDs and MUDding
1DDDOOHOHHHHHHD 9 OOS GHGS 9 OOSGSPPSSS V9 SSOVSSSE

A good example of role-playing on non-combat MUDs is FurryMUCK. FurryMUCK isa very

popular MUCK that has been around for quite some time and has been mentioned in

several magazine articles about MUDs. On FurryMUCK, all the characters are furries.

“What is a furry?” you ask. A furry is an anthropomorphic animal—a creature that looks

like an animal but is intelligent and has human characteristics, such as Bugs Bunny and

Daffy Duck. Players on FurryMUCK assume the role of an animal and play the part. You

might see these anthropomorphic animals playing games with their tails or making

chipmunk noises (rather than just chatting). The fact that you are playing an anthropo-

morphic animal gives you a lot more freedom in the way that you can express yourself

(cats can purr, dogs can bark, and so on).

The idea of acting a part in this new virtual world may sound odd at first, and is not

required—many players simply imbue the character they create with their own real life

personality. Acting a part, however, is a fundamental step in understanding MUDs,

especially combat MUDs. The most important distinction is that the different types of

MUDs focus on two different (although not mutually exclusive) forms of role-playing. The

first is pure role-playing, which has been discussed in the last few paragraphs. This means

assuming a role and acting it out. You interface with others, react to what they do, and

have fun playing a character. The other form of role-playing is more game oriented and

is detailed in the following section. It involves creating a character, imbuing that character

with specific abilities, and then developing those abilities.

Player or Character?

You, as a person, are a player on the MUD. The visual being that you have created (your

MUD alter ego) is a character. Many times on MUDs, these two are confused, and often,

they run together. In this book, | have tried to keep them separated, but it can become

pretty confusing. So | have devoted some effort to keeping them distinct in parts of this

chapter that discuss what happens when a character dies. Remember, what usually

happens on a MUD is happening to your character and not you. (Well, unless you are
talking about real life, and then you are you and not a character.)

A player character (PC) is a character played by a real person. There also are non-player

characters (NPC) that are either played by wizards or the MUD’s computer. These NPCs

usually are monsters (although some people only consider very advanced, semi-

intelligent monsters to be NPCs and the rest to be drones) or wizards playing NPCs. PCs
are other real people. And it is not always easy to tell the difference.

Another important difference is OOC and IC. OOC (Out Of Character) means that you are

talking as you, the player, and not as your character. You use OOC to talk about real life,

ask for help on using the MUD (your character doesn’t know about the MUD), or just
basic real world talk. Some MUDs even have special OOC rooms for direct player-to-
player talk. Remember, anything designated as OOC will be taken as something said
player-to-player in real life. tells and pages also are generally assumed to be OOC.

ay

Chapter 3. ¢ Your MUD Persona and Role-Playing 35
OQQV@DPOGOHHHOOIHHHGHOSS OOH HHHGHHHHHOHHOHHHHHOOOOOSE

On the other hand, /C (/n Character) is used on many non-combat, role-playing MUDs
to indicate that you are returning to your character after an OOC discussion. It means you

are playing your character and anything you do is coming from your character and not

you, the player. On role-playing MUDs, it is assumed that you are IC unless you indicate

otherwise or ask some blatantly OOC question.

Before continuing on with the discussion of some of the systems that combat MUDs use

to define characters (specifically to allow the MUD to manage combat between players

and monsters or other players), let me address another type of MUD.

MUSH There are MUSHes on the Internet that use statistics, like other combat MUDs, and

probably even fall under the classification of combat MUD. On these MUSHes, however,

you don’t gain experience from fighting and fighting is pretty rare. You do have statistics

and other characteristics similar to the ones you are to learn about, but you do not use

them exclusively for combat. You role-play a character who is an active participant in the

world. Many of these MUSHes are based in the World of Darkness, a gothic version of

today’s society that also is occupied by vampires, werewolves, and mages. This world and

its accompanying game system are based on a popular and more traditional role-playing

game published by White Wolf Game Studio.

On these MUSHes, your character will have stats and the other characteristics about to be

discussed, but if combat arises or you need to use your special skills in some way, you call

a judge. A judge is a special type of administrator (like a wizard) who can arbitrate combat

or other special actions by characters. You also can have judges construct objects for you

if they fight for the needs of your character. These particular MUSHes focus on role-

playing and players vote to give experience points to players who do a good job of

role-playing their characters. If you think you will be playing this type of MUSH rather

than just the non-combat MUSHes, you should read on. If you expect to only be playing

on social MUDs, you may want skip to Chapter 4.

L F Most of what you will read in the rest of this chapter is only relevant to combat MUDs.

The Statistical Being
You have this new character you have created on a MUD. You want him or her to be able

to do things, such as kill monsters, buy items, and move around. How do you do that? How

are your character’s capabilities defined? This is the core difference between a combat

MUD and a social MUD. On social MUDs, there are no intrinsic differences between

characters (other than perhaps that of player and wizard), whereas on combat MUDs,

characters may be very different from one another.

36 Part! ¢ Introduction to MUDs and MUDding

BOQDOOOHHHHHHD BOOSH HHGHHH BD OVP PD PDGOSP OS 9 VVSPGSSHBBSE

score outputs the vital characteristics that make up your MUD character. These statistics

and numbers are the lifeblood of your MUD character and determine his or her

ID Capabilities in combat, spellcasting, and other MUD activities.

To begin looking at the non-social aspects of a MUD character, or the “statistical being, i

look at the following use of the score command:

> score
Tyla Initiate of the 6th Circle

Levels 12
You have 86% of the experience needed for the next level.
Hp: 113/145 S$p:132/132
Money: 22497 (45000)

Guild: druid

Race: elf

Size: medium

Alignment: evil
Ser: 38 Ante 8 Wis; 6

Dex: 4 Con: 1 Chr: 4

Wimpy 30%
Hunted by: Nothing at all, aren't you lucky?
You are normal. (Yeah, right)
You are a Druid, protectorate of the races.

To see your abilities, type ‘druid’

Ok.

The preceding output from score details this character’s stats in the form of level,

experience, HP (or hit points), SP (or spell points), money (or gold), guild (or class), race,

size, alignment, and stats, such as str (strength), int (intelligence), wis (wisdom), dex

(dexterity), con (constitution), and chr (charisma). These are the statistics that you will

see on many MUDs, but they will vary from MUD to MUD. The chapters on the specific

types of MUDs (Chapter 8 for LPMUDs and Chapter 9 for DikuMUDs) go into more detail

on the specific types of stats you might see on these MUDs. Further, there also are MUSHes

that have stats based on other game systems. For example, there is a large group of MUSHes

that use the role-playing game called Vampire: The Masquerade as their basis, and hence,

use the stats and other characteristics set forth in that system.

At the core of acharacter ona combat MUD are his or her base statistics (called stats). These

stats usually are strength, dexterity or agility, constitution or stamina, intelligence,

wisdom, and charisma. The stats used vary widely, but the preceding six tend to appear

a vast majority of the time. They have become standard because they are used in the

Dungeons & Dragons games from TSR, Inc. Because many of the role-playing games (both

computer-based and otherwise) have been inspired by D&D, many of the core elements
are similar.

Chapter 3. ¢ Your MUD Persona and Role-Playing 37
BSDOSHOGLIIOHSGGHHHGO HD YHHHHHSOHHVIHHGHOHHHOOHIHHHGHOOHHHOOE

Recommended Reading on Role-Playing
Advanced Dungeons & Dragons Player’s Handbook from TSR, Inc., is the classic book on
role-playing and provides detailed information on statistics, races, classes, and more. This
book is useful for learning more about the statistics and systems used, such as hit points
and levels, and the actual mechanics of combat. Many MUDs are loosely based on the
systems described in this book. AD&D tends to focus on the gaming aspects of role-
playing.

Vampire: The Masquerade from White Wolf Game Studio is a more recent role-playing
system. This book does an excellent job of explaining the concept of role-playing with

less of an emphasis on the game aspects. For a better understanding of how to role-play
a character and develop it, this is the best book | have encountered. Besides its usefulness

as a guide to role-playing, there are also several MUSHes based on this game system.

(These are the World of Darkness MUSHes | discussed briefly earlier in this chapter.)

These core stats can affect your character in many ways. Strength means you can hit

harder, dexterity means you can dodge attacks better, constitution means you can survive

longer, intelligence means you can cast more powerful spells, and so on. Although the

manifestation of these effects may vary from MUD to MUD, the general idea is the same.

Another important part of your character is hit points. Hit points (HP) determine your

ability to take damage. When you get to zero hit points you generally die. On MUDs there

are usually many ways you can get hurt (or take damage)—that is lose hit points—and

there also are many ways to be healed—have your hit points restored. Generally, your

character will have some maximum number of hit points and a current number of hit

points. When these two numbers are the same you are at full health. But if you attack a

monster you may get hurt and your current hit points will go down. You need to watch

your current hit points closely so that you know if you are in bad shape.

The maximum number of hit points usually is determined by your level, your class, and

your constitution (one of the statistics discussed previously). The effects of your level and

class will be discussed soon. Your maximum hit points will not go up often; only when
your level or your constitution increase.

Another number, spell points (or SP), determines your magical power; although on many

MUDs, spell points affect more than your ability to cast magical spells. If your character

is a class that can use magic (see classes in the next section), he or she can use spell points

to power spells. Other characters may find items that require spell points to become

activated, such as magic wands or special swords. Finally, on many LPMUDs, spell points

are used for some social commands, such as tell and shout.

38 Part! © Introduction to MUDs and MUDding

BDBWOOELHHOHOHHHOHVDHHHGHHOGHHVIOH HOGI IODWVOBDOSGIO Ve

tell <player> <message>

page <player> <message>

page <player>=<message>

These commands relay your message to the designated player wherever on the MUD he

or she may be. The designated player can be standing in the room with you or at the other

end of the MUD.

Some MUDs, LPMUDs, and DikuMUDs tend to enable this type of command more than

others, and have a command that allows you to send a message to everyone who is

currently using the MUD. shout <message> gives your message to everyone on the MUD.

DikuMUDs have several versions of this. For more information, see Chapter 9.

tell and shout use spell points on an LPMUD. This partially is to avoid shouts cluttering

the airwaves with irrelevant information (requiring spell points severely limits the

number of times any one person can shout). tells require spell points to keep people from

collaborating too closely without being in proximity. LPMUDs emulate fantasy worlds,

and a tell allows telepathic communications among the players, so this is restricted to

maintain game balance. This restriction also helps keep players from abusing tells by

using them to kill other characters. If there were no spell point requirements, a character

could send many consecutive te11s to another character while he or she is in combat, and

the barrage of tells could cause the commands the player types to be delayed just enough

to result in his or her death from the monster he or she is fighting.

Like hit points, your maximum number of spell points usually is determined by your level,

your class, your intelligence, and, depending on the MUD, your wisdom. Like hit points,

spell points do not increase very often.

Your character also has experiences. These experiences are quantified in experience points

(XP, EP, or eeps). You can use experience points in several different ways (depending on

the MUD). The primary effect of experience points is that they determine your level. Some

MUDs also allow you to spend experience points to increase your stats, skills, and other

capabilities.

RealmsMUD—from which many of the examples in this book come—makes it difficult

ou” to tell the exact number of experience points a character has. On RealmsMUD, the score

command tells you only the percentage of the way you are to your next level, but not

the exact number of experience points your character has. This generally is not the case

and usually the score command will tell you exactly how many experience points you

have. So, on most MUDs, you know the exact amount of experience your character has

at any given time and how many experience points it takes to advance to the next level.

Chapter 3. * Your MUD Persona and Role-Playing 39
®@OOGGOHGLYDHSHGHGHGHOVIVHHHHGOOVIIHSHOHHGHOOOVOOOSE

Level
The /evel of your character is an indicator of your relative strength. You begin at the first

level and advance as you gain experience points. As you advance levels, you will gain new

skills, more hit points and spell points, and become more powerful. On many MUDs, there

are areas that are restricted to various levels — newbie areas have areas in which only new

users can enter, and high-level areas are areas in which only experienced players can enter.

Some weapons and armor also have level restrictions.

Your level also may affect your ability to raise your stats. It may even affect your ability

to ally with other players. As far as statistics go, it probably is the most important part of
your character.

Your Virtual Body
All of the stats and other characteristics that are being discussed here are held by the

computer. You have no power to change them except through the game. (Wizards can

change them if something goes wrong...or, in some cases, if you bribe them.) But in

general, this part of your character will only change as you play. As you gain levels and
experience points, you will have opportunities to increase your stats. As you fight

monsters, your alignment probably will change. Sometimes, spells can temporarily raise

(or lower) your stats or change your alignment.

Anytime you kill a monster, you will gain experience points, which are automatically

added to your character. The next time you use the score command, you will see that

your experience point total has gone up. You do not need to worry about these numbers

because the computer (on which the MUD is running) keeps track of them. If you have

the opportunity to increase your stats or improve your character in some way, the MUD

will prompt you with what you need to do.

When you kill a monster or advance a level, you should use the save command. This

command saves the latest version of your character so that in case the MUD crashes, you

still will have the latest version of your character. (Occasionally the MUD will go down

for no reason and everyone will have to log back in—this is known as a crash.) Most MUDs

have an autosave feature that saves your character on a regular basis, but it never hurts

to be safe. When you quit, your character is saved automatically.

The stats that make up your character are almost always yours alone. Other characters

cannot see your stats, although they usually can see your level, class, and alignment. Only

you can see your stats, hit points, spell points, and experience points. The exception to

this rule are wizards because they can look at almost anything on the MUD.

40 Part!| © Introduction to MUDs and MUDding

1DDOOLHLOGHHHHHGVlOGHHGHHID BV QOWDHOHGHHH VOGIDHGHHIDIWOIIOIOE

The Class or Guild
Finally, your character will have a class or guild. This is your character’s profession or

specialty. As usually is the case, the powers and names of these classes will vary widely

among MUDs.

LP LPMUDs almost always start off new characters as members of the Adventurers’ Guild.

MUD = This class has a few spells (that are gained as you advance in levels) and fight reasonably

well. Members of this class have an average number of hit points and spell points.

Adventurers are considered to be a fairly weak class and no one tends to remain an

adventurer for very long. Adventurers are important because they are standard through-

out LPMUDs (although some have done away with them). Also, not all LPMUDs have a

rich system of classes or guilds, and on those MUDs, all characters are adventurers—there

are no other choices.

Guilds are strong in either spells, combat, or special skills. Spells can vary from the

capability to teleport to another player on the MUD to a fireball that inflicts damage on

all the monsters in the room. Combat is the capability to use weapons or even one’s hands

to inflict more damage on an opponent and to avoid or better handle damage that is done

to you.

Special skills is more of a broad category. Thieves tend to have many special skills, such

as backstab. Backstab allows the thief to inflict large amounts of damage on an unsuspect-

ing victim. Special skills have the highest degree of variance among MUDs.

Following, as a point of reference, is the list of classes from RealmsMUD. As is always the

case, these classes are not standard, but the classes on Realms run fairly close to the

standard set on many LPMUDs. After each description, a little insight is offered into what

the classes/guilds can really do.

REALMS Class Information (read sign).
> read sign

Bards
Bards have many special social powers. They can sing songs, shout more, and cause

mischief. Most of these capabilities aren’t particularly helpful in combat, but they are

great for entertainment and role-playing. Bards tend to be able to use almost all weapons

and armor. They are average fighters and have a fair selection of spells.

The Bard Guild
The bards are a merry folk. Their main powers are gained through

song. Their various songs give them magical powers, though they

are still formidable fighters. They incorporate many different abilities
of the other guilds, and have a few spells, or songs, of their own. hee:

Chapter 3 © Your MUD Persona and Role-Playing 41
PHOS QLLO®DDHDSHOGS HOGI DHHHHHOOVHVIHGHHHHOOHHHHHOHOOOHOOHOE

Druids
Druids have average fighting skills and spell casting. They have both offensive and

defensive spells and healing spells. They can use any weapons and all non-metal armor.

Because druids are neutral, they can use things that are geared toward both good and evil

characters. (Druids are a more specialized guild and their implementation will vary quite
a bit.)

The Druid Guild
The druids are people of the forest. They live in harmony with
nature, and pay careful attention to their alignment. Due

to their closeness with Mother Earth, they are not allowed
to wear metal armors. Their fighting skills are indeed
formidable, as well as their magical prowess.

Fighters
Fighters are, well, the best fighters. They are attacked in the same time period as other

classes and can use all weapons and armor, but they don’t have magical capabilities. On

RealmsMUD, they havea few special capabilities beyond good fighting skills. Fighters also

tend to have more hit points than other classes.

The Fighters' Guild

The fighters' guild has two parts: Barbarians and Paladins.
The Barbarians are those who view the barbaric way of fighting as the way of
life, while the Paladins look to the Gods of Law for their fighting strength.
The two groups are based on alignment, with the Paladins being good and the

Barbarians being evil.

Mages
Mages are the masters of spellcrafting. They have spells for virtually ever occasion, except

healing. Mages cannot use most weapons; they are restricted to daggers and staves. They

also are restricted in the armors that they can wear—they can only wear robes and

periphery armor (such as boots, gloves, and bracers). In combat, mages must rely on their

offensive and defensive spells rather than their fighting capabilities. Mages often have

more spell points and fewer hit points than other classes.

42 Part! © Introduction to MUDs and MUDding

GOBDWDOGGHHOHHHDHVYHOGOHHHHDD 99S HHGHHF SOV IPDIID SOSVGE

~

The Mage Guild
The mage guild is the guild of magic and magicians. Using their

keen intellect, they are able to call up the forces of
magic to do their bidding. They, like the druids, must pay close

attention to their alignments. Their various spells are very
powerful, but, due to their dedication in the study of their magic,

they have not had time to train in fighting.

Monks
Monks specialize in unarmed combat. They need neither weapons nor armor, which tends

to makes them pretty self-sufficient. RealmsMUD monks can meditate, which heals them

and returns them to full strength. Any interruptions during meditation, however, cancel

the effects and the monks must meditate again. Because monks do not need weapons or

armor, they tend to have more gold than other players—they can sell all the weapons or

amor they find (and they don’t have to spend money buying them).

The Monk Guild

The monks' guild is the guild of discipline. They live in seclusion
for much of their lives, learning their art. They are very

adept at using magical spells, and are very proficient fighters.
However, armor interferes with their capabilities, so they are not

allowed to wear it. Their natural armor class is powerful enough,
however, to protect them from any harm.

Priests
Priests are the masters of healing and regenerative magic. They can cure typical poisons

and diseases, and have the strongest spells for replenishing hit points. They also have a

resurrection or reincarnation spell they can use to raise characters from the dead (without

the substantial loss of experience points that other methods might result in). Priests can

wear most types of armor and can wield a variety of weapons, but their fighting

capabilities generally are below average. Priests tend to be pretty popular, however,

because of their capability to heal and raise the dead. They tend to work much better in

tandem with other players.

The Priest Guild

The priests are men (or women) of the cloth. They spend most of
their time praying to their God. In return, He grants them many
wonderful powers and spells. Due to their dedication to their

God, however, they have not had time to hone their fighting Me at
and aS a consequence, are not very good at hand-to-hand combat.
But, their many powerful spells more than make up for this deficiency.

Chapter 3. ¢ Your MUD Persona and Role-Playing 43

DOOOOCHQOODSHOGHOHOGSWVIHSHHGSOOOVIH9HOGHGHOOOHOSOO

Thieves

Thieves tend to be some of the least popular players. Among their skills is the capability

to steal from monsters (and sometimes players). This means that the thief can take an

object the monster has (usually only those items the monster is not wielding or wearing)

without fighting the monster. This helps thieves to acquire a large quantity of gold, but

tends to make other players mad when their characters spend a long time killing a creature

and don’t get the treasure because a thief has already stolen it.

Before you attack a monster (especially a powerful one that might take you some time

to kill), you should look at it and make sure any items you expect it to have are still in its

possession. If it is a monster you have never fought before, this will not be particularly

helpful because you probably will not know what items it should have. If, on the other

hand, you are killing this monster solely to get some item that you need or want, check

and make sure it has not been stolen or otherwise taken from the monster before you

spend a lot of time killing the monster.

The Thief Guild
The thieves are the rogues of RealmsMUD. They slink around, steal

anything they can get their hands on, hide in the shadows, and

have many other capabilities. They are adept at hand-to-hand combat, mostly

because if they get caught, they must fight their way out. Their

abilities come almost naturally to them, and many are dextrous and

strong.

The preceding example shows another side of MUDs that you will soon notice. MUDs are

run by people for fun—no one gets paid for running them. People contribute to MUDs

and develop them as a hobby. Because of this, you often will find typos and misspellings.

Feel free to report these to wizards, but don’t expect any fast changes. The general

attitude is “If you can read it, it’s good enough.” Thus, people usually spend more time

working on substantive things and less time on making sure the spelling and grammar

are perfect.

Keep in mind this is not always the case. Many wizards and builders are very diligent

about the work they do. Many devote a great deal of time to making sure their work is

free of spelling and grammatical errors.

This is just a point of information so that you will not be entirely shocked when room

descriptions do not appear as professionally written prose or when you encounter the

occasional misspelling or the MUD where people are not quite so diligent about the

written language.

44 Part! ¢ Introduction to MUDs and MUDding

DD VOQOGHHHHDGYOOGHGGHID IBID PDOG9I SA BVIBVSBIISOSGE

Again, I want to stress that classes among MUDs can vary widely—not just the types and

names of classes that are available, but also the skills and powers they possess. There are

MUDs on which priests are very good fighters and MUDs on which mages can wield

swords. The best way to learn about classes is to log on to the MUD as a guest and ask people

about the different classes (see Chapter 4 for more information about logging on as a

guest). I have found that MUDs do make an effort to balance the classes, so your decision

should be based on whether you like to adventure alone orin a group (monks, forexample,

have an advantage in adventuring alone and priests are very powerful as part of a group),

whether you like spells or hand-to-hand fighting, and which class you think is the coolest

and best fits your MUD persona.

Money and Gold
Most fantasy-based MUDs use gold as the currency system in the MUD world, although

this may vary. Some MUDs also have copper and silver as smaller denominations. Some

science fiction MUDs use credits as the base currency, and some MUDs even use dollars.

Players can generate money by killing monsters, which often have gold, and by collecting

and selling in stores the items these monsters possess. Stores tend to only pay amaximum

value for any item, no matter what it is worth (this maximum is often 1000 pieces of gold).

Because stores usually do not pay what the item is worth, players often sell weapons and

armor to other players to get a better return.

Just like in the real world, money (generally gold) is very important. Once you accumulate

some wealth, you can buy weapons in stores when you log on rather than acquiring them

from monsters, which generally means killing weak creatures to get small weapons and

mediocre armor, and then killing larger creatures to get slightly better weapons and

armor. Most LPMUDs do not let you keep your possessions between logins. DikuMUDs,

and some LPMUDs, often let you pay rent to store your items between MUD forays.

As you can see, money is important, even in the MUD world. You sometimes can use

money to build houses, build castles, or run stores. Some MUDs have more advanced

economic systems than others and allow players to own shops and more.

Miscellaneous Information
Your MUD character also may have a race, although not all MUDs have races. This race

usually is just a cosmetic difference, but it may have other minor effects. Some MUDs give

different start stats for different races; thus, an elf may have a slightly higher starting

intelligence, a half-orc may have a higher strength, or a dwarf may have a higher

constitution. Humans usually are the base characters and have an average score in every
stat. Races may have other differences or special skills. On some MUDs, especially

DikuMUDs for example, elves and other demi-human races have infravision, which

enables them to see in the dark. (Infravision is the ability to see into the infrared
spectrum.)

Chapter 3 ¢ Your MUD Persona and Role-Playing 45
GBOGGQODSDOOGHHHOOOD9HHHOGHGSHOOHHHGHGHGHHHOHHVHSHOHHOOHOOSE

Races also sometimes affect the classes that are available. On some MUDs, for example,

only humans can be druids. On DikuMUDs this is very important; DikuMUDs allow

characters with multiple classes (the combination of classes available to a new character
is defined by his or her race).

Race also defines another characteristic shown in the example of the score command,

which is size. Size is not a standard MUD characteristic, but on this particular MUD it

defines the basic size of the character’s body. This is important for wearing armor. For
more information about armor and size, refer to Chapter 2.

Finally, alignment is the last important characteristic discussed previously. Alignment is

your outlook on the world—usually good or evil, but sometimes chaos or law. Often, your
alignment is based exclusively on what type of monsters you kill—if you kill good

monsters, you will be evil; if you kill evil monsters, you will be good. As you can see, it

doesn’t always have a foundation in reality—sometimes it is nearly impossible to tell what

alignment a monster may be.

On some MUDs you can choose your alignment. The alignment you choose will affect

your character in several ways. There are weapons on many MUDs that must be wielded

by characters of specific alignments. The Holy Avenger sword, for example, is a powerful

magic sword that you are only allowed to wield if you have a good alignment. Your

alignment also may restrict your ability to enter certain regions of the MUD. Some classes

place a heavy emphasis on alignments while for others it is often irrelevant. Priests, more

than other classes, for example, usually are affected by alignment. Priests often have

different spells, depending on their alignment—and if they deviate from their alignment,

they may lose their spells altogether. An evil priest, for example, may have a cause wounds

spell that does damage to a specific target, while a good priest would have a heal wounds

spell that would heal damage done to a specific target. If the good priest became evil, he

or she might not be able to use the heal wounds spell until he or she returns his or her
alignment to good.

Death and Dying
Your MUD character can die. If his or her hit points fall below zero, you will see the

following, which is the most dreaded message in the game:

You die.
You have a strange feeling.
You can see your own dead body from above.

This is the standard LPMUD death message; however, it will be different on DikuMUDs

and it may be altered on any given LPMUD. What happens after you die varies.

46 Part! ¢ Introduction to MUDs and MUDding

OBB WOGOSVIHGGHHHOOOHSHGHHHDOHHOEPHHHGIDIWS PSG OBDIIIIIIIOE

So your character has just died. How do you get him back? Is he gone forever? On a

DikuMUD, your character will be instantly resurrected and transported to the Temple (the

central location on most DikuMUDs). Unfortunately, you will lose all your possessions

because they will be on your corpse and your newly resurrected body will have only 1 hit

point (of course you can be healed to your normal maximum).

Corpses

When your character (and monsters) die, a corpse will be left behind and all of your

possessions will be on it. Whenever there is a corpse, you can use get all from corpse

to take the gold and items that might be on the dead body. This command primarily is

used to get the treasure from the monsters that your character kills. Of course, it can also

be used when your resurrected character goes to retrieve his items from the dead corpse.

And it can just as easily be used by anyone who stumbles across your dead corpse. Note,

however, that it is considered bad etiquette to steal from another player character’s dead

corpse. The proper thing to do is offer to get his stuff and deliver it to his newly resurrected

body (wherever that might be) or just leave it there for him to get himself.

Should your character die on an LPMUD, one of two things will happen. You will turn into

a ghost and then be teleported to the church (or the central area of the MUD) or left where

youare. Asa ghost, you really can’t do much other than talk to people and wander around.

To return to a more solid body, just pray in the church. After you use the pray command,

you will be resurrected into a new body, although the new body will only have 1 hit point

and you will need to heal.

Death on MUDs carries some stiff penalties. On some MUDs, when you die, you lose one

or two points from random stats. You also might lose a large number of the experience
points you have accumulated—enough to lower you one level, which usually ends up

being about a third of the experience points you had before you died. Some MUDs allow

priests to resurrect players so that the dead player can avoid this loss of experience points,

or suffer a smaller loss. It’s a good idea to try to find a priest to resurrect you before using

the more standard reviva] mechanisms.

You will find that death is a real bummer. In fact, I think everyone I know has wanted to

break things or has smashed their fist into their desk after a death. After you’ve been
playing for 10 hours to get a level and then die in a moment of foolishness and lose

everything, you'll be pretty upset. The first time you die may well be the moment you
realize how attached you are to your character.

Chapter 3 ¢ Your MUD Persona and Role-Playing 47
'PDOOOl®POHDOGOHQHHYDGHGHHHOGHOIIHHHHGHGHOOVIHHHHSOHHOOOHHOOOG!

Player Killing
The concept of player killing can be a little unnerving. The term player killing has evolved
and isa common term on MUDs, but it really has nothing to do with killing other players.

Player killing is when players use their characters to kill another player’s character.

Remember, this is only a game, and if your character is killed by another player's

character, don’t take it personally.

Many people who are attracted to player killing are the same people who enjoy other
head-to-head games like Mortal Combat and Street Fighter. In these games, andon some

MUDs, the objective is to kill your opponent. Just remember, it is just a game.

Player killing? I know it sounds odd, but you are in a vast, new world with many other

characters. Sometimes violence erupts. It is not uncommon for players to get mad at each

other, so what recourse is there? Well, you can complain about it to one of the MUD’s

administrators (usually a wizard), but if it isn’t a problem that violates MUD rules, it is

likely that the administration won’t intervene. So what do you do?

Just as you can kill monsters, you also can kill players. Killing other players is not

something to be taken lightly, however. In fact, on many MUDs it is banned—and on

some MUDs, not only is it banned, but the capability to kill other players has been

completely removed from the game. On many MUDs, however, it is still legal, although

often frowned upon. The attitudes on player killing vary widely, from it should not be

allowed to it’s the whole game.

On most MUDs, where it is allowed, player killing happens only rarely. This brings up the

distinction between player killing and being a player killer. If you kill someone once and

have a pretty good reason, it generally won’t cause problems (unless that person has

powerful friends or wants revenge). If you kill several different players for poor reasons,

however, you could start to earn the angst of other players. If you wander around

wantonly killing other players, you certainly will attract the attention ofa MUDlynchmob.

Some players enjoy player killing because it is very different from killing monsters.

Because MUD monsters usually aren’t very intelligent, monsters don’t strategize and

usually don’t chase after you if you run away. Fighting monsters is more of knowing when

it is dangerous for you to continue the fight so that you do not die. Because other players

are unpredictable, some players enjoy the challenge and the greater risk involved in player

killing.

The allure of player killing is so great that several MUDs have developed the focus solely

on player killing. They have no normal avenues for adventuring and all players are equal

in power. The only objective is to kill everyone else before you die.

48 Part! ¢ Introduction to MUDs and MUDding
DDODOOOGHHHHGGGH YO 9HHGG9D 999 9SOSDI9GOOOG9G99SVOGSE

Genocide

This LPMUD is devoted to player killing. One of the first, and certainly most popular,

player killing MUDs, Genocide is always packed full of players. Genocide has a system of

wars. If you log in when a war is in progress, you will be dead and ineffective until the

next war. At the end of the war, everyone is brought back to life and given the same stats,

hit points, spell points, and so on; thus, everyone is equal and a new war starts and all

players run off into the MUD world to collect as much money as possible and find the best

weapons and armor (to more effectively kill other players). It’s a race to find the best items

and the most money. Knowing the geography of the MUD is very important because this

knowledge (knowing where to run) can save you, and knowing where to find the best

equipment can help you.

There also are team wars in which the players online are divided into even teams (based
on wins and kills in previous wars) and then are released to go kill the members of the

opposing team(s).

This system of wars can be a lot of fun. It is very fast paced and is a great diversion. If you

are killed on another MUD, it’s nice to go to Genocide and vent your frustrations. And

dying on Genocide doesn’t hurt you—unless, of course, you are a die-hard Genocide

junkie, which there are many, and your kill-to-death ratio is very important to you.

Address genocide.shsu.edu or camelot.shsu.edu (192.92.115.145)

Port 2222

Type LPMUD (MUDs)

Summary
Now you understand the basics of MUD characters and what they’re about. This should

give you the basics you need to jump on a MUD and see what it is really like. Onward to

Chapter 4 and connecting to MUDs!

Now that you understand the basics of MUDs, it is time to connect to

one. Before connecting to a MUD, however, you have to know a little

about the Internet. The Internet is a huge web of interconnected

networks that spans the globe. Originally made up of government and

education sites, it now encompasses huge numbers of commercial

sites, and the number of users that access it is increasing astronomi-

cally. The Internet relies on many protocols (formal structure for

exchanging information between two or more computers) to provide

users with access to its many resources. One protocol, called TCP/IP

(Transmission Control Protocol/Internet Protocol), provides a road-

way for all of the other protocols to communicate. TCP/IP works much

like the highway system: TCP/IP and the physical connections of the

network are the road, the other protocols are cars and trucks, and the

information you are sending and receiving is riding in the cars and

trucks. Just like cars, there are many different protocols, such as HTTP

(HyperText Transfer Protocol), the protocol used by the World Wide

Web and Mosaic; the Gopher protocol; and the FTP (File Transfer

Protocol), which is the protocol used for transferring files.

50 Part! © Introduction to MUDs and MUDding

1B OOHOOHHOHHHHWOOHGHHGHHHYVDOSHGHHHHDWOPOGHHGBPDBOVBOSISO

MUDs rely on another protocol called telnet, which allows the user to connect to other

machines on the Internet. Most of these computers on the Internet are not Macintoshes

or PCs but multi-user machines running operating systems such as UNIX. Because these

machines support large numbers of users, they require that you log in. The login process

basically means that you have to identify yourself to the computer so that it can grant you

the correct privileges and access. Your identity is your username (often your initials or your

last name) and a password. Because only you know your password, your identity is

confirmed and prohibits others from mimicking you on the Internet. This safeguard is

very important on MUDs because you don’t want someone walking around the MUD

pretending to be you.

Depending on what kind of connection you have to the Internet, telnet may have several

different guises. If you connect to a UNIX machine via a modem (generally called a dial-

up or shell account), you likely know how to use telnet already. However, if you don’t

know how to use telnet, all you need is a simple command. From the prompt (probably

a %, a $,. or something ending in >), type telnet helios.cs.duke.edu. You see Trying

152.3.145.1..., which indicates that the computer you are using is trying to connect to

the computer to which you have just tried to telnet.

The telnet Command comes in two main varieties:

telnet <machine name or number> <port> for UNIX-based machines

telnet <machine name or number> /port=<port> for VAX/VMS-based machines

<machine name or number> is the computer to which you want connect (telnet), such as

helios.cs.duke.edu Of 152.3.145.1

<port> is the port number (which defaults to 23). MUDs use non-standard port numbers,

so you will need to type in a separate number. In telnet realms.dorsai.org 1501, for

example, 1501 is the port number of the MUD

The following is an example of a standard telnet session:

Stelnet helios.cs.duke.edu
Trying 192.9.145.1...
Connected to helios.cs.duke.edu.
Escape character is ‘*]’.

SunOS UNIX (helios)

login: busey

Password: [You will not see your password as you type it.]

Et: ©

Chapter 4 © Connecting to MUDs 51
SGOSHVOQDIDSOOHGHHOODSHHHHHOG OOD YHHHHHHOOHHHHHHHOOHHSHOOO

If you are using SLIP (Serial Line Internet Protocol) or PPP (Point-to-Point Protocol) to

connect to the Internet (SLIP and PPP enable your computer to simulate a direct

connection to the Internet over a modem), or if you are lucky enough to have a direct

connection, you have to launch an application to telnet. This application is likely called

telnet and is included in every commercial TCP/IP package, such as NetLink’s Internet

Access Kit, Spry’s Internet in a Box, and FTP Software’s OnNet. The telnet application will

most likely have an open connection option that allows you to type in the address of the

MUD or the computer with which you want to connect. Using these custom telnet

applications is usually straightforward. Because the applications can vary, consult the

manual if you have any problems.

Ports
MUDs work in a slightly different way but within the parameters of telnet. Because MUDs

run on computers that are usually being used for other purposes (such as supporting a

school’s e-mail server, a company’s World Wide Web server, general login for working

under UNIX, and so on), they must be reachable separately from the computer itself. For

example, theremay bea MUD on realms.dorsai.org.... By typing telnet realms.dorsai.org,

you get the login prompt for the computer’s operating system (usually UNIX), which is

different than the login prompt for the MUD. MUD addresses generally have a second

component called the port. The port is added at the end of the telnet address to identify

the MUD. For example, telnet realms.dorsai.org 1501 reaches the MUD instead of the

computer’s operating system. The port also becomes relevant when a computer is used to

run more than one MUD. For example, telnet marble.bu.edu 5000 takes you to an LPMUD

called 3 Kingdoms, while telnet marble.bu.edu 7777 takes you to a CircleMUD called

HexOnyx.

If you are using a telnet application (as with TCP/IP, SLIP, or PPP), you may havea separate

port entry when you open a connection. This port entry probably contains the number

23 as a default (or the word telnet). The number 23 is the standard port number for

connection directly to the machine’s operating system; 23 is also the assumed port when

you telnet without a port number. So if you are using your telnet application and a 23

shows up in a box or window for the port, just type the MUD’s port number over the 23.

Figures 4.1 and 4.2 show screen shots from two telnet programs for Microsoft Windows.

As you can see, both figures have different screens for setting up the parameters fora telnet

connection. It is fairly easy, however, to discern where to enter the port number for each

program.

52 Part! © Introduction to MUDs and MUDding
DOS WVOGOHHHHHHVDOOGHHGHGHHSODBQOGGHOGHOIHVQSOSOSOH"

| oP Figure 4.1.
The connection screen for

Reflection 2, a terminal

emulation program (which
cl : Beste Connection r (one

includes telnet) from Walker ete alias emed |
Richer & Quinn. This is a | TELNET — [gs] ieaimsdorsaiorg SSC rs
commercial program and allows)| Teuminal Type arity TOP Pot s

many different types of network } = fernone ist Gs 4
connections and terminal | TERAP Host Names File '
emulations.

pe
339

Figure 4.2.

EWAN, a good, freely distrib-
uted Microsoft Windows telnet
program. Note, however, that

companies and others needing

support are asked to pay $495 a
year to the author.

Both these programs work with any Winsock 1.1-compliant TCP/IP stack, which includes
the Trumpet Winsock stack (which is available on the Internet) and any of the other
commercially available products, such as NetLink’s Internet Access Kit and Spry’s Internet
in a Box. A stack is a special piece of software that provides your computer with TCP/IP
and other Internet protocols.

Chapter 4 ¢ Connecting to MUDs 53
2@@ QOSOOLGYOODVIDDGOHG OOOHHSGHHHHSHOHHSHHOHHOHOVOHHSHHSHOOOSOOOE

You can get the latest version of the EWAN telnet program (shown previously) for

Microsoft Windows by using a WWW browser to connect to the following:

http: //www.lysator.liu.se/~zander/ewan. html

You also can use anonymous FTP to connect to the following:

ftp.lysator.liu.se

You can get this file (in binary mode) by typing the following:

/pub/msdos/windows /ewan1052.zip

The listed file is for EWAN, Version 1.052, which is current as of the writing of this book.

| recommend using the World Wide Web. It has pointers to sites in the U.S. and Canada

where the latest versions of the software are available. The FTP server is in Sweden and

could potentially be very slow for U.S. users.

What You Will See
Now that you know how to connect to computers on the Internet, and more importantly

to MUDs, take a look at what you actually see when you log in to a MUD.

%telnet realms.dorsai.org 1501
Trying 198.3.127.200...
Connected to realms.dorsai.org.
Escape character is '*]'.

é ‘ ‘| /ss==- i ri

. N ie DENN eee

ee pe Se
ee Piacoa e oalle eed Beale ie ANN

ee = HANNS tai s7 f- See os we /

iv | AAS ols. ft Nie ey

/ / Woe Ed ail \ 7
ae io CON Se | eae a:

a ii yo Ne es
Fnam\ f | a /\

EN Ne WN

we Ne ay ‘ses \

Ce af «
ee + \ a (oe) ot Ve

; The Return of : oor mn \. oe

i RealmsMud Te | eee

' | Lys mnt oN

i (Art via USENET)

Use the name: ‘guest', password: ‘realms’, if you just want a look.

54 Part| ¢ Introduction to MUDs and MUDding
GOVOOHHHHGSO8 99S HGSS09SS 0909S 09 9S 98S99S 9996

DISCLAIMER: The administrators of this MUD reserve the right to monitor and/or

log any activity that takes place on it. They further reserve the right to

restrict access to anyone for any reason, without notice.

Amylaar Version: 03.020310

Name & then password to enter the game. Enter or 0 to leave.
1 then name and password so you can change your password.
2 to see who is currently playing.

What is your command? tarod
Password: [You will not see your password when you type it.]
You get the player object.

Connecting to obj/player ...

If you are using the standard command line telnet, you can do several things to make your

MUD experience more interesting. All of these things can be mimicked in telnet

applications as well, but the commands for using them vary widely.

Suspending Your Session
The command Contro1-] returns you to a telnet> prompt that provides many things. The

most useful command is z. By using z at the telnet> prompt, you return to your UNIX

command prompt, where you then can finger people. (finger is an Internet/UNIX

command that enables you to find information about other users.) You also can send mail

or open another MUD session. After you do whatever you need to do in UNIX, you can

type %1 (or on some machines fg 1 or fg %1) to return to the open MUD session. This

procedure works numerically; for example, if you have two MUD sessions open, you use

%1 and %2 to go to those sessions. (%1 is the first MUD you have connected to, and %2 is the

second, and so on.)

The following is an example of how this might look. This sample session starts while I was
logged in toa MUD. I used a MUD command (smile) to show that I was on the MUD. I then
used control-] (which is shown as *}) to return to the UNIX prompt. I then used the UNIX
command, finger, to get information about myself. When I was done, I used «1 to return
to the MUD.

> smile

You smile happily.
rue

telnet> z

[1]+ Suspended telnet realms.dorsai.org 1501
matrix: /usr/home/busey>finger busey

Login: busey Name: andrew busey
Directory: /home/busey Shell: /bin/bash

Chapter 4 ¢ Connecting to MUDs 55
2@BOOSSGHOHLVIDHHHGHGOHODIVDHHOHHOOOIHHGHGHOHOHOOHOHOOE

On since Mon Apr 17 12:52 (CDT) on ttyp1 from 199.171.21.122
No Plan.
matrix: /usr/home/busey>%1
telnet realms.dorsai.org 1501
> wink
You wink.
>

Logging in to Your First MUD
Now that you have a sense of how MUDs fit into the Internet as a whole, look at logging

in to an actual MUD. Logging in to a MUD for the first time can be an adventure. Most

MUDs enable you to login as guest. Guest accounts usually do not require passwords, but

try guest, if you do need one.

People have a wide variety of tastes in MUDs—just like anything else—and it often takes

looking at a few MUDs before you find one you like and are comfortable playing. Using

the guest character is a good way to narrow the search. If, after you login as guest, you

decide that it is not the MUD for you, you can just move on to the next one. Using the

guest character to look around also is a courtesy to the MUD administrators who do not

want tons of new characters who have only logged in once filling up their system.

To help you understand the different things you may encounter, the following sections

walk you through the process of logging in to three different types of MUDs.

Passwords
When you first log in toanew MUD to create your MUD character, you will need to choose

a password. Your password is very important. Your password is the only thing that stops

someone else from logging in to the MUD and assuming your character. Imagine all the

evil someone could do if they could assume your real life body for a day. That’s what it

would be like in the MUD world if someone got your password!

Choosing a password for a MUD is similar to choosing a password for any computer

account. Choose a word, or better yet, a phrase or anagram, that is not obvious. Do not,

for example, use the name of your character, your first name, or the name of your

significant other. And never, never use the same password as the one you use on other

MUDs and any other Internet computer accounts you may have. Most MUDs prevent

players from getting the passwords from within the MUD, and most encrypt the password

when it’s stored in the database files. However, there is nothing preventing the MUD’s

owner from modifying the code to dump the passwords to a file, along with other

information such as the host from which you connected. Using this information, an evil

MUD admin probably could figure out your login name and easily get into your account.

56 Part! © Introduction to MUDs and MUDding

GBDOOOOHHHHGG YOO OG OHGHSYVWVDDOGHGDBBSI99GSBIBOSO0'

You also should not use the same password on different MUDs. If your password gets out

on one MUD, all your MUD characters will be compromised. This especially is important

for MUD Wizards and Gods. If your client has a auto-login feature, you should use it to

protect the file that contains the login information from being read by others.

Possible Password Problems

This story talks about a program called Crack. Crack is designed to take dictionaries

(whether of the Webster’s variety or just a collection of words, phrases, or existing

passwords) and check them against the list of usernames and passwords on a UNIX

computer. Crack can find any passwords on that UNIX computer that are in the

dictionaries that Crack has been configured to use.

The following story comes from Alec Muffett, author of Crack and maintainer of the

alt.security FAQ, and is taken directly from the MUD FAQ that is compiled by Jennifer

Smith.

aem@aberystwyth.ac.uk: The best story | have is of a student friend of mine (whom

| will call Bob) who spent his industrial year at a major computer manufacturing

company. In his holidays, Bob would come back to college and play AberMUD on

my system.

Part of Bob’s job at the company involved systems management. The company for

which he worked was very hot on security, so all the passwords were random strings

of letters and had no sensible order. It was imperative that the passwords were

secure (this involved writing down the random passwords and locking them in

large heavy-duty safes).

One day, on a whim, | fed the MUD persona file passwords (which were stored in

plain text) as a dictionary (one of the custom ones mentioned in the introductory

paragraph above) into Crack and then ran Crack on our system's password file. A

few student accounts came up, but nothing special appeared. | told the students

concerned to change their passwords—that was the end of it. (That was the end

of Crack’s testing on that computer, but the dictionary containing the MUD

passwords was never removed, which is explained in the next paragraph.)

Being the lazy guy that | am, | forgot to remove the passwords from the Crack

dictionary, and when | posted the next version to Usenet, the words also were

posted. It (Crack) went to the comp.sources.misc moderator, came back over

Usenet, and eventually wound up at Bob’s company. Round trip: 10,000 miles.

Being a cool kinda student sysadmin dude, Bob ran the new version of Crack when

it arrived. When it immediately churned out the root password on his machine, he

nearly fainted. The moral of this story is never use the same password in two
different places—especially on untrusted systems (like MUDs).

Chapter 4 ¢ Connecting to MUDs 57
'2PDS9SGSOS SSS G9SGSS999909099SGO09080800800E

Logging in to Your First LPMUD
RealmsMUD is an LPMUD. Like most LPMUDs, RealmsMUD has a significant amount of

custom features that have been added over the years of its existence (over three years).

LPMUDs vary significantly, but after you get the basics down, you can easily navigate the

different incarnations.

%Stelnet realms.dorsai.org 1501

Trying 198.3.127.200...
Connected to realms.dorsai.org.

Escape character is °°]!4

(1.
fox

Noe, PL NG AS Realmsmud, The Original
CN iN Pio td yA (USENET art)

/ fehl Oe ye N\A
CAR § fie 2
W//W_/ iif He ‘or
4) Lil . \\ \\

Wei ye for) LE 11 VN ee
Oe) ae al it SS \\ ~~~*-,

COT))) 378 a So oy
CO Hi)) = IX / ag _* \

(C 71/)) al } / \ \
(Ch) =-.\ Ve “3 Ves

VO oe ee
I/f- ge = = a

DISCLAIMER: The administrators of this MUD reserve the right to monitor and/or
log any activity that takes place on it. They further reserve the right to

restrict access to anyone for any reason, without notice.

Amylaar Version: 03.02@310

Name & then password to enter the game.
Enter or @ to leave.
1 then name and password so you can change your password.
2 to see who is currently playing.

What is your command? justicar

New character.

Ly To create a new character on an LPMUD, just type the name of your new character at the

our first prompt. The prompt might be What is your command?, login:, or Enter your name:,

NOTE depending on the MUD administrators.

58 Part! ¢ Introduction to MUDs and MUDding

GWDOOOHHHHGHHHDHVVOH9HHHDVDIOIPHHHD SI SVOSH OSE

Password: [Type your new password here; you usually will not see it when you

type 16.)

Password: (again) [Type your password again to make sure there were no mis-

takes.]

KKKKK Realms Mud KKKKK

@) Exit the game.
1) Enter the game.

2) Change password.

Enter thy choice: 1

You get the player object.
Connecting to obj/player ...
Welcome to Realms, the BEST LPmud EVER!!!
You get 1 points to spend on your stats.

You are now Justicar the utter novice (level 1).
Please enter your email address (or ‘none'): none

Pick a race, (?) for a list:
2

Valid Races

Dwarf

Halfling

Gnome

Half_orc
Faerie

Half_elf

Pick a race, (7?) for a list:

elf
Are you, male or female: male

Welcome, Sir!

do "help NEWS"
(You are responsible for it, even if you have not read it)

KHKKKKKE KKK KK KKK KKK KKK RK KKK KEK KKK KK RK KKK KERR KEKE KE KK KEK KR KKK KEK KEKE KKEEKEESE

We updated the machine and parser! Please if you find bugs that could be
parser/machine related ONLY, _mud_ mail Animal.

MANY thanks to Dorsai for the net connection!

MANY thanks to all the people involved who made it possible!!!

REALMS Class Information (read sign).

zo ph
This is the initiation room.

Welcome to RealmsMud. This is the start room.
You may now spend points on your stats. You do this by

typing: spend <stat>. ie spend int Once this is done

a

Chapter 4 ¢ Connecting to MUDs 59
DOOD QOO®QSIOHGHGHOHQOIHHHGHOGGHOSHHHHGHOHOOQHOHHHGHHHOOOOOOOE

it is recommended that you wander around and check out
the guilds before you choose to 'join' a guild.

Good Luck and Enjoy!

The commands in this room are: points, spend, done.
REALMS Class Information (read sign). —

The sign mentioned in the preceding sample session is the same sign mentioned in

Chapter 3 in the segment titled “The Class or Guild.” On RealmsMUD, you do not choose

your Class in the login sequence; you choose it after you begin playing.

> points

Points Left: 3

The preceding text indicates that I have three points left. On this particular MUD, you are

given three points to add to your character’s starting stats. Your starting stats on this MUD

are two plus whatever modifications your race may give you. Other MUDs use slightly

different systems for creating your character’s initial stats. Other systems include

complete random starting stats and different base stats.

> spend con
You bought a point of constitution.

con is short for constitution and int is short for intelligence. Constitution increases your

hit points and intelligence increases your spell points. | have found that on the majority

of MUDs, these by far are the most beneficial stats. You should increase your constitution,

and if you plan to use magic, you should increase your intelligence.

Points remaining: 2

> spend int
You bought a point of intelligence.

Points remaining: 1
> spend con
You bought a point of constitution.
Points remaining: 0

> score
Justicar the utter novice

60 Part! ¢ Introduction to MUDs and MUDding
DODWDOOOHHHHHGHHVH9OHGHHHHHHVSSGHHOHHHVHOVOGO

Level: 1
You have 0% of the experience needed for the next level.

Hp: 56/56 S$p:1/56
Money: (11000)

Guild: none
Race: elf

$ize: medium
Alignment: neutral

Str:-2 ints 5 Wis: 2
Dex: 4 Con: 4 Chr: 4

Wimpy 0%
Hunted by: Nothing at all, aren't you lucky?

You are normal. (Yeah, right)

> done

The Church

You are in the main church of Realmsmud.

You see a set of stairs that go down to the healing waters of
the Realms. There is a huge pit in the center, and a door in

the west wall. There is a button beside the door.

There is a clock on the wall.
This church has the service of reviving ghosts. Dead

people come to the church and pray.

*****<DON'T CAST SPELLS OR FIGHT IN THE ChURCH = =es>

There are exits south, north, up, east, and down.

Zxaigon the utter novice (Mortal).

A magic portal, leading to many houses.

REALMS players rules.

Virtually all LPMUDs start in the church. The church is important because it serves as a

central location within the MUD. The church also is a haven, which means that no

combat is allowed while you are there. Finally, if you die, you can come to the church and

pray. After you pray, you are resurrected, although not without a penalty in experience

points and stats. Before you pray, however, you might want to look for a priest who can

resurrect you without the cost in experience points that the church will exact.

> read rules

Welcome to Realmsmud!

Hi, and welcome. This is a short but sweet list of rules. These

are enforced, so it probably wouldn't be a wise idea to ignore them.

1) No cheating on quests.

This includes getting help from other people while doing a quest. The
whole

concept of quests is to test your problem-solving abilities. And
that doesn't work if someone tells you how to do the quest from
beginning to end. (plus, it's not nearly as fun.. ;>) b

Chapter 4 © Connecting to MUDs 61
SOQVPDQSHOHOGOOOIVHHOHGHOOOVIGHGHSOHOOOHHOO™

2) No shouting profanities.
This is kind of objective, but I trust you all know what bad words are.. j;>

Shouting also includes guild and race lines, so have fun, but watch
your language while doing it. (keep it halfway civil)

3) No Player Killing (except by those registered)

Unless you are registered, or the owner of a diamond, do _NOT_
kill other players, by any means, understood?? And for diamonds

if you go around reapering lower level players, or use it too much
for no apparent good_reason, then you will be reapered (more than a

few reapers at once), or electrocuted, or both.

4) Be Nice
This is pretty much common sense. It makes the mud a whole lot
more fun for everyone if you're nice. Just treat everyone the way
you would in real life.

5) Cheating/Bugs
Cheating of any kind will not be permitted. Right now this mud
is going through a transition period. There WILL be bugs, taking
advantage of them and not reporting them is a nasty offense and

WILL be enforced. So if you see a bug, let us know by typing

bug <then the problem>. (or telling/mailing the wizard whose bug

it as)

6) Harassment
Harassment of any kind on this mud will also _NOT_ be tolerated. If
you can't get along with someone here, then don't play.

7) Robot
NO ROBOTS or ROBOT type actions will be tolerated. Minor
client interaction is permissible, like picking up stuff if
someone drops something. But NO auto-killing modes, no running
through the mud full speed till your client spots a live monster
and stops for you. Anyone caught with this (and it's REAL easy
to catch you) will be cut in half in everything, including

your level. Going from level 30 to 15 sure would suck....

7) HAVE FUN!!!
BY FAR, the MOST important rule.

2 §
You are in an open area south of the village church. To the east

is a substantial town. Forest blankets the hills to the west.

You can see the top of a massive board through the trees to the south.

There are three obvious exits: west, east and south.

Grudge i am finally back to positive exp. #=-) (Mortal).

Minstrel Rabidchild died and lost tons of xp, but is helping newbies

anyway! Go figure! (Mortal).

Xtreme the utter novice (Mortal).

A Short Dream Post.
Grudge leaves east.

>e
A track going into the village. The track opens up to a road

to the east and ends with green lawn to the west. You notice

a small hole here.

62 Part! ¢ Introduction to MUDs and MUDding

DDHHOOHHHHHHHGG 9000S GES59 899999699099 S9099 9898005

~

There are three obvious exits: north, west and east.
Taishan is getting engaged sooner than you may think....:) (Mortal).

A small hole leading down—Newbie Area.

Watch for A small hole leading down—Newbie Area. (newbie areas, not small holes); they

can be very helpful to a new player. A newbie is a name for new players, like frosh or

freshman is a name for new college students. Newbie areas usually contain monsters that

you havea pretty good chance of killing without being mauled. Because these areas do not

allow higher-level players, the newbie areas are less likely to be completely plundered.

Logging in to Your First DikuMUD
U Elite is a popular MUD based in Sweden. It is based on DikuMUD and one of its derivatives,

OUD CircleMUD. Although it is customized, it is used here as the reference for DikuMUDs. Just

like with LPMUDs, DikuMUDs vary significantly. After you get down the basics, however,

you can easily navigate the different incarnations.

%telnet 130.237.222.237 4000
Trying 130.237.222.237...
Connected to xbyse.nada.kth.se.
Escape character is '“]'.

- MUD 5.1 with AQs

Under Creation by Petrus Wang & Richard Rosenberg.

Based on DikuMUD (GAMMA 0.0)

Created by

Hans Henrik Staerfeldt, Katja Nyboe,

Tom Madsen, Michael Seifert, and Sebastian Hammer

Special credits to Jeremy Elson for CircleMud2.2 code

By what name do you wish to be known? tarod
Did I get that right, Tarod (Y/N)? y

New character.
Give me a password for Tarod: [You will not see your new password as you type
LG}

Chapter 4 © Connecting to MUDs 63
BODOVOD®DWDSOHOGHGVOQHSHOHHOGHH VOW HHGHHGHHHOOHHHGHHSGHHOOOOOO!

Please retype password: [You must type your new password again to make sure

you there were not any mistakes.]

Select Screen Mode:

{a] Normal Terminal

[b] VT10@ Compatible

[c] VT & ANSI Color
{d] IBM/PC color&character set

[7] Help!

Screen Mode: a

The ANSI color and VT100 emulation on this MUD are very nice. Unfortunately, unless

you have a very high-quality terminal program (if you are using a shell account to access

the MUD) or telnet application (if you havea direct or SLIP/PPP connection), you may find

that it does not work very well. When it does work, it is very convenient and adds a lot

to the MUD; but when it goes on the fritz, it can be a big problem. (Make sure the ANSI

and VT emulation you have are solid, which you will find to be true in most commercial

software.) If you don’t know about terminal emulations, you probably shouldn’t try this.

What is your sex (M/F)? m

Select a race:
[a] Human [b] Half-troll [c] Halfling
[d] Dwarf [e] Gnome {#] ELF

[g] Half -elf [h] Half-ogre [i] Half-orc
{j] Duck [k] Fairy [1] Minotaur

{[m] Ratman [n] Drow {o] Lizardman

Enter capital letter to get info about race

Race: f

The races available in this MUD are quite diverse. The races on DikuMUDs also often tend

to mean more than on LPMUDs. For example, elves can have infravision (the capability

to see in the infrared spectrum) on DikuMUDs and, therefore, can see in certain dark areas

where others cannot (without some external light source.) The specific capabilities may

vary, but expect some racial capabilities on DikuMUDs, whereas on LPMUDs, the race will

only modify your stats and your social situation.

Select Class:

[a] Magic-user

{[b] Cleric
[d] Warrior

[9g] Bard
[h] Knight

64 Part! ¢ Introduction to MUDs and MUDding
1G @OOOHS9 SHIH 9O99GHH9999999H99S989 9809899

[i] Wizard

{j] Druid
[1] Ranger

[n] Paladin

{q] Warrior/Thief
[r] Warrior/Cleric

{s] Warrior/Magic-user
{t] Thief/Cleric

[u] Thief /Magic-user
[v] Cleric/Magic-user

[-] Reselect Race died

Enter capital letter to get info about class

Class: s

As you can see in the preceding sample session, this DikuMUD has are a large selection

of classes. As is common on DikuMUDs, there also is the option to be multi-classed. Also,

DikuMUDs restrict certain classes and multi-class combinations to certain races. In the

preceding, if the user chooses to be human, the list of classes presented is different.

Project EliteMud started 9th April 1994.

Elite is a serious programming project, with the intention of

research and testing of algorithms, datastructure and complexity

with multi-user systems.

Elite is under development. That means there may be some bugs.
The balance of the mud may not be too good either, though hard

work has been put in on that.
As a player, you will have things to say about this mud too.
All ideas are welcome.

* This is NOT a renting mud. Equipment saved on quit.

* The stats are no longer rolled: All start with 11 and with 13 in

two prime stats. Stats will improve (not always) when leveling.

* CLAN SYSTEM IN—Use CLAN command

* All changes/news will now be put in NEWS.

Read the NEWS often with : > NEWS (CAPITAL LETTERS)

"It's not that I am afraid to die, I just don't want to be there
when it happens. "

- Woody Allen

*** PRESS RETURN:

After creating a new character, you should use Option 2 to enter a description. Adding
a description gives your character more depth.

Chapter 4 © Connecting to MUDs 65
OLOVBOSOS HOO 1D POLQWWDOHHOHHYOOVHHGGHOHHHHOHHHOHGHOHHOOOOHOOO

(@) Quit EliteMud.
(1) Adventure in the Realm of EliteMud.

(2) Enter description.
(3) Read background story.

(4) Change password.

(5) Delete this character.

The option is yours: 2

Enter the text you'd like others to see when they look at you.
Terminate with a '@' or '.' at the beginning.
Old description :
] Tarod is a tall elf with long black hair and glowing green
] eyes that seem to focus a hidden inner power.

]

After entering a description for your new character, you once again are returned to the

login screen, but now you can enter the MUD and begin your adventure.

(Q) Quit EliteMud.
) Adventure in the Realm of EliteMud.
) Enter description.

(3) Read background story.
) Change password.

) Delete this character.

The option is yours: 1

Welcome to the land of EliteMUD! Stay awhile ... Stay FOREVER!

The Temple Of Midgaard
You are in the southern end of the temple hall in the Temple of

Midgaard.
The temple has been constructed from giant marble blocks, eternal in

appearance, and most of the walls are covered by ancient wallpaintings

picturing Gods, Giants and peasants. Large steps lead down through the grand

temple gate, descending the huge mound upon which the temple is built and ends
on the temple square below. To the west, you see the Reading Room. The donation

room is in a small alcove to your east.
A large, sociable bulletin board is mounted on a wall here.
An automatic teller machine has been installed in the wall here.

Firebird The Vulcan's Fire Sword is standing here.
Mistress Nymph will do anything if you WORSHIP her! is standing here.

66 Part! ¢ Introduction to MUDs and MUDding

ODO WVOOGOOHHO HG VHOGHHHHGHHDYOPSGHGHHHHD VIDS OSH PSIVOVHE

Trentreznor the Lizard Magic-apprentice is standing here.
Funnyguy the Minotaur Master-Blade/Patriarch is sleeping here (2zzzzzz).
Lyioness the Half-elven Novice/Spell-delvress is resting here.
Gelon the Drow Swordpupil/Believer/Magic-apprentice is standing here.
Raster the Half-elven Knight/Patriarch/Minor Elemental is sleeping here

(ZZZ222Z).

Toyota the Minotaur Rogue/Minister (linkless) is sleeping here (ZzzzzzZz).

+A horse is standing here.

+The Priest is standing here, offering his services.
[Exits:neswd]

You don't have an alias file.

< 35Hp 110Mn 93Mv >
Firebird walks east.

< 35Hp 110Mn 93Mv >

Nelric walks in from the east.

< 35Hp 119Mn 93Mv > stats

Level 1—Tarod the Elven Swordpupil/Magic-apprentice -
17 year old male elf 2-multi-class player

Levels 1/1 warrior/magic-user

Str l13/@] int: [11t Wiss 211]. Dex. lit] Gone tot snaserise
AC[100/10] Hitroll[@] Damroll[@] THACO[20] Resistances[@/0/@/0/0]

Magic: (innate) infravision

Wolfe walks south.

< 35Hp 110Mn 93Mv > score

You are Tarod the Elven Swordpupil/Magic-apprentice (level 1).
You are a 17 year old elf. It's your birthday today.
You have 35(35) hp, 110(110) mana and 93(93) movement points.
You are neutral.

You have scored 1 exp, and have 2000 gold coins.

You need 2665 exp to reach your next level.

You have been playing for ® days and ® hours.
You are not carrying anything.

You have nothing in your inventory and no items equipped.
You are standing.

< 35Hp 11@Mn 93Mv >
Sixxgunn appears in the middle of the room.

< 35Hp 110Mn 93Mv > skills
You have got 3 practice sessions left.

These are the skills you know:

stab (not learned) | bludgeon (not learned)
slash (not learned) | chop (not learned)
spellcraft (not learned) | pierce (not learned)

< 35Hp 110Mn 93Mv >

Chapter 4 ¢ Connecting to MUDs 67
DOOODODODHHGHGH HOLY HGHGHHHHHOSBVGHHGHHHHHOOVSSHHGHOHHHOOVHOHHOH

Logging in to Your First MOO
Moe LambdaMOO is the most popular MOO (perhaps the most popular individual MUD of any

type), and it has received a lot of publicity (it has even been covered in Newsweek in the

November 7, 1994 issue). Because of this publicity, it also is very crowded (often over 150

users) and can be slow. For example, the following session has 13 seconds of lag time.

MOOs work a little differently than the two types of MUDs (LPMUDs and DikuMUDs)

discussed earlier. To become an official MOO player, you need to request that a character

be made for you (whereas on the MUDs that you have seen in the last two example, your

character was created instantly). To create your character, for example, you may need to

send e-mail to an administrator or use an application process that is part of the MOO

(which is the case on LambdaMOO).

%telnet lambda.xerox.com 8888
Trying 192.216.54.2...

Connected to lambda. xerox.com.
Escape character is ‘*]'.

KREKKKKKEKREKKEKAEEKEKERKKKEKEER

* Welcome to LambdaMOO! *
REKKKEKKKKEKEKKKEKKEKKEKKEKKEKERE

Running Version 1.7.8p4 of LambdaMOO

PLEASE NOTE:
LambdaMOO is a new kind of society, where thousands of people voluntarily

come together from all over the world. What these people say or do may not
always be to your liking; as when visiting any international city, it is wise
to be careful who you associate with and what you say.

The operators of LambdaMOO have provided the materials for the buildings of

this community, but are not responsible for what is said or done in them. In
particular, you must assume responsibility if you permit minors or others to

access LambdaMOO through your facilities. The statements and viewpoints
expressed here are not necessarily those of the wizards, Pavel Curtis, or the

Xerox Corporation and those parties disclaim any responsibility for them.

For assistance either now or later, type ‘help’.

The lag is approximately 13 seconds; there are 171 connected.

help

Type ‘connect <character-name> <passwora>' to connect to your character,

‘connect Guest’ to connect to a guest character,
‘create’ to see how to get a character of your own,

‘@who' just to see who's logged in right now,
‘@uptime ' to see how long the server has been running,

‘@version' to see what version of the server we're running, or
‘@quit’ to disconnect, either now or later.

For example, ‘connect Munchkin frebblebit' would connect to the character
‘Munchkin! if ‘frebblebit' were the right password.

After you've connected, type
"help' for more documentation.

_ Please email bug/crash reports (but NOT character-creation requests)

68 Part! © Introduction to MUDs and MUDding

GOOVOOHHGHHH9H9HVH9HHGHHGD VHS OSSOIBIBWOVOOO

Typing help displays list commands available from the login screen. The results of create

and connect guest are shown in the following paragraphs. To connect by using an actual

player, you need to log in as guest arid send a message. @who is not very useful on

LambdaMOO because it does not show you who is 1 because usually there are over

100 people on the MOO at any given time. @quit disconnects you from the MOO. @uptime

and @version are one line pieces of information that do not serve much of a purpose.

create

To get a character, log in as a guest user and use the command @request <character-name>

for <email-address>. The character is entered in the waitlist. The password is mailed to the

e-mail address when the character is created. After you are on as a guest, read *b:mpg for

details of the waitlist mechanism. Note that only one character per person is allowed.

connect guest

Okay,... guest is in use. Logging you in as ‘Plaid Guest'

Plaid Guest? Yes, it’s odd. MOOs assign guests by different colors or some other physical

property, depending on the MOO. You may see an Azure_Guest, a Gold_Guest, and many

other shades of Guest.

#** Connected ***
The Coat Closet

The closet is a dark, cramped space. It appears to be very crowded in here;
you keep bumping into what feels like coats, boots, and other people
(apparently sleeping). One useful thing that you've discovered in your
bumbling about is a metal doorknob set at waist level into what might be a
door.

You hear a quiet popping sound; Yellow Guest has disconnected.

Gator opens the closet door and leaves, closing it behind himself.
Rosy_Guest teleports out.

Now that you are connected as a guest, use the command @request <character-name> for

<email -address> to request a new character. Because the MOO checks to see if your e-mail

address matches the address from which you are connecting, be sure to use a real e-mail

address. If the addresses do not match, the MOO prompts you to explain yourself. The

next command shown in the following session demonstrates the formula or method that

LambdaMOO uses to create new characters. Expect a wait for your new LambdaMOO

character. The details of this waiting list mechanism are shown in the following MOO
session under Minimal Population Growth (#75104).

Following is a sample of what it looks like when you create a character on a MOO that

allows automatic character creation (rather than the delay procedure used on LambdaMOO).
This session is taken from Jay’s House MOO at jhm.ccs.neu.edu 1709.

Chapter 4 ¢ Connecting to MUDs 69
SOSSOOSSOS99GS O99 8G9GSH9 04909900999 O008000

@request Tarod for busey@eden.com
**** Connecting to Mail server localhost port 25.
*** Mail sent successfully.
...#19
A character named “Tarod" has been created for you. The password has been
e-mailed to your account. Have a nice day.

Now back to the original MOO session!

read *b:mpg
The Coat Closet
The closet is a dark, cramped space. It appears to be very crowded in here;

you keep bumping into what feels like coats, boots, and other people
(apparently sleeping). One useful thing that you've discovered in your
bumbling about is a metal doorknob set at waist level into what might be a
door.

Copper_Guest comes home.

Minimal Population Growth (#75104)

by legba (#26603)
[Last edited on Wednesday, March 16, 1994 at 12:24 pm]

BACKGROUND
This petition is proposed as an alternative to *p:zpg. Though *p:zpg

addresses a very real social and technical problem, the solution it proposes
is quite drastic, and it lacks implementation details.

According to current, very rough estimates, approximately 50 new player

requests are coming in per day, or 1500 per month, and inactive players are

being reaped at the rate of perhaps 60-80 per month. Though the figures are

alarming, there is no way yet of determining whether this is a continuing
trend. It _is_ clearly advisable to put some mechanism in place to curb the
growth-rate.

PROPOSAL:
That a waitlist be established from which all new character requests are

granted that holds up to, but no more than, 500 names. New requests would be
time-stamped with the day and time of the request, and be ordered

chronologically.

The number of new players created would be restricted to 5 per day
(approximately twice what the current reap rate would allow).

Requests would
be created from the waitlist on a first-come, first-served basis. A
requestor's name would remain on the waitlist for 30 days, after

which their
name would be dropped. As vacancies come available from reaping,

requests
over and above the 5 per day could also be created from the waitlist.

All requests would be assigned a number instead of a name, so that desired
character names won't be tied up during the waiting period. Once new
characters are made, they can be given instructions on how to @rename

themselves.

70 Part! © Introduction to MUDs and MUDding

O9BOOHOOHHHGDDOOO9GHHGHDDBOVVDODSIBIVSODVOSSE

A requestor is allowed to update their request and renew interest by some

@rerequest mechanism, whereupon the date of the original request remains, but

the expiration is reset for another 30 days. Renewed requests can be made

repeatedly.

Players who request characters but never log in should be reaped after 30 days.

The number limit of 5 characters per day, the limit of 500 on the waitlist,

and the time-periods of expiration can be regarded as arbitrary, and

adjustable by the wizards at their discretion, without submitting the changes

to the petitions process. If this occurs, however, public notification

should be provided, with reason given for the change.

(You finish reading petition #75104, *B:mpg)

** Type ‘impl *B:mpg' to see the wizards' implementation notes for this

proposal.
There is new news. Type ‘news' to read all news or ‘news new' to read just

new news.
Type ‘@tutorial' for an introduction to basic MOOing. If you have not already
done so, please type ‘help manners’ and read the text carefully. It outlines

the community standard of conduct, which each player is expected to follow

while in LambdaMmoo.
Fongul teleports in.

help manners

Copper_Guest opens the closet door and leaves, closing it behind itself.
You hear a quiet popping sound; Heartbeat has disconnected.

The help manners command on LambdaMOO provides a very useful set of guidelines that

should be followed by all MUDders. Its output is included here because everyone who

plans to use LambdaMOO or any other MUD needs to read it.

LambdaMOO, like other MUDs, is a social community; it is populated by real

people interacting through the computer network. Like members of other

communities, the inhabitants of LambdaMOO have certain expectations about the
behavior of members and visitors. This articlé lays out a system of rules of

courteous behavior, or "manners", which has been agreed upon by popular vote.

First of all, any action that threatens the functional integrity of the MOO,
or might cause legal trouble for the MOO's supporters, will get the player

responsible thrown off by the wizards. If you find a loophole or bug in the

core, report it to a wizard without attempting to take advantage of it.

Cracking falls outside the realm of manners. Read ‘help cracking' for more
information.

Beyond that, there are two basic principles of friendly MOOing: let the MOO
function and don't abuse other players.

==== LET THE MOO FUNCTION =====
Besides not trying to hack or break things, this means not hogging resources
by taking up more memory or processing time than necessary.

Chapter 4 ¢ Connecting to MUDs 71

2 BOS OLLDDSOGOHGSGHHHOYGHHSHHOOYHHHHHHOOHHOOOE Fae 2

To help keep database bloat down, please @create thoughtfully, @recycle unused
objects, @rmmail when done with it, use feature objects instead of copying
lots of verbs, and don't recycle and recreate objects seeking "interesting"

numbers (this inflates all the object #'s, which are long enough already).

The MOO server is carefully shared among all the connected players so that
everyone gets a chance to execute their commands. The more demanding

players’ commands are, the more of a load there is on the server, and thus
the more lag there is.

If you are writing a program that will run for a long time, please make it

wait at least five seconds between iterations (use ‘fork (n)' or ‘suspend(n) '
where ‘n' is at least 5). This will give others a chance to get their

commands in between yours.

==== DON'T ABUSE OTHER PLAYERS =====
The MOO is a fun place to socialize, program, and play as long as people are

polite to each other. Rudeness and harassment make LambdaMOO less pleasant
for everyone. Do not harass or abuse other players, using any tactic

including:

* Spamming (filling their screen with unwanted text)

* Teleporting them or their objects without consent

* Emoted violence or obscenities

* Shouting (sending a message to all connected players)
Don't shout unless you have something everyone needs to hear. This

basically means emergency system messages from wizards.

* Spoofing (causing messages to appear that are not attributed to your

character)

Spoofs can be funny and expressive when used with forethought. If you
spoof, use a polite version than announces itself as a spoof promptly, and
use it sparingly. See ‘help spoofing’ for more information.

* Spying
Don't create or use spying devices. If you reset your teleport message,

make sure it is set to something, so that you don't teleport silently.
Besides having a disorienting effect on people, silent teleportation is a

form of spying.

* Sexual harassment (particularly involving unsolicited acts which simulate

rape against unwilling participants)

Such behavior is not tolerated by the LambdaMOO community. A single
incidence of such an act may, as a consequence of due process, result in

permanent expulsion from LambdaMoo.

In general, respect other players' privacy and their right to control their

own objects, including the right to decide who may enter or remain in their

rooms.

Also respect other players' sensibilities. MOO inhabitants and visitors come
from a wide range of cultural backgrounds both in the U.S. and abroad, and

72 Part! © Introduction to MUDs and MUDding

HG®DOOOHOHGHHHGDOOHHHSHGDHVOOGHHHID FD IWOPDG GIS IBIOIOO’

om

have varying ideas of what constitutes offensive speech or descriptions.

Please keep text that other players can casually run across as free of

potentially-offensive material as you can. If you want to build objects or

areas that are likely to offend some segment of the community, please give

sufficient warning to casual explorers so that they can choose to avoid those

objects or areas.

===== SELF-DEFENSE ======
Avoid revenge!

If someone is bothering you, you have several options. The appropriate first

step is usually to ask them to stop.

If this fails, and avoiding the person is insufficient, useful verbs include

@gag, @refuse, and @eject. Help is available on all of these.

If you have a serious problem with another player, you may want to consider

invoking arbitration, in which another player decides the dispute. Since
arbitration is some trouble and is binding on both parties, make sure you

really want it before invoking it. See ‘help arbitration’ for details.

==== PROBLEMS WITH GUESTS =====
If you are having a problem with someone logged in as a Guest, you have
another recourse: you may @boot them. Type

@boot <guest-name>

This will ask you for a reason. Enter the reason on multiple lines, followed

by a '.' on a separate line. Please note that abuse of guest-booting is quite
serious, and are subject to the arbitration process. All guest-bootings are

logged.

If you have a question about something in this text, or about anything else on
the MOO, type ‘help’ to see a listing of available help texts. If you don't
see what you're looking for, page Help or use the Helpful Person Finder in

the Living Room to find someone who can answer your questions.

If you couldn't read the above text because it scrolled off your screen and

you don't have any text capture mechanism available on your host, type ‘help
@pagelength' and 'help @linelength' to learn how MOO can help you read this
and other lengthy text.

You will want to do the following as soon as you login with your first character:

@gender male

Gender set to "male".

Your pronouns: he, him, his, his, himself, He, Him, His, His, Himself

Chapter 4 ¢ Connecting to MUDs

To define your character’s sex and to describe your character, use the following:

@describe me as <the message you want people to see when they look at you>

@describe me as Tarod is a striking man. He is very tall and has pitch black
hair. His eyes seem to glow with a brilliant green.

Description set.

This will have the following effect:

look at me
Tarod is a striking man. He is very tall and has pitch black hair. His eyes
seem
to glow with a brilliant green.

He is awake and looks alert.

look at emma
tall, quiet and clumsy. short brown hair, wire-rimmed glasses. terribly domes-

Lic
at times, but a music scholar at heart... too sweet for her own good.

She is awake and looks alert.
Carrying:

emma's nametag Emma's membership button
a cat an alarm clock

Your character now has personality and form, so people don’t just see white space when

they look at him or her. Now you're on your way.

Summary
As you can see from this chapter, MUDs come in many varieties. This chapter walked you

through the process of connecting to MUDs and some of the specific idiosyncrasies of the

different types of MUDs. The login process probably is one of the ways MUDs are most

diverse, so take heart and know that using the different kinds of MUDs will not always be

this difficult.

This chapter also should have given you a better feel for how MUDs look and work. Now

that you’ve made it through the basics, go on to Chapter 5, which introduces you to the

social commands that are available on MUDs. Soon you will be MUDding like a pro!

73
SSSOSSSSGSSSH O 9G 9 G9GSOS695 008 999969900008000

we

wil © eae tea Ae ginecil nee 3
eidiO-iia) qa eee ou

Th, Le ve, ae Nat wa

“tees

“ -

Zé

IUD PLAYERS GUIDE
Chapter 5

MUD Social Issues

Chapter 6

MUD Relationships

Chapter 7

The Social MUDs—MOOs, MUSHes,
and MUCKs

Chapter 8

LPMUDs: An Introduction to
Combat MUDs

Chapter 9

DikuMUDs

Chapter 10

MUD Clients

Chapter 11

Being a Wizard (MUDding at the Next

Level)

CHAPTER

Zo ee

pd

MUD S@CIAL ISSUES \

The most important part of MUDding is the interaction between the

players. In fact, there are several MUDs that are exclusively social

environments—they provide neither a role-playing framework nor a

game system. However, no matter what kinds of MUDs you choose to

play on, you still need to be aware of certain social issues. This and the

next chapter discuss MUD social commands, MUD etiquette, and

MUD relationships.

Socializing on MUDs
When playing on MUDs, if you don’t know something, the best way

to get an answer is to ask someone—just like in real life. In real life,

however, you don’t always have someone there to ask. With MUDs,

there’s always someone there; but before you can ask someone for

help, you need to know how to communicate properly on the MUD.

78 Part Il ¢ MUD Player’s Guide
GOWOOHOHH9G9DYOOOGHHHS GB 9 9ODGGHDSBS BF SOVSBSDOSSS¢

When you are talking on a MUD, the person you are talking to or someone else in the

room may be recording the conversation. There also is a chance that a wizard may be

watching your conversation. Although it’s not common, you need to be careful about

what you talk about and who you talk with on MUDs.

Most Windows and Macintosh-based terminal programs and telnet applications enable

the user to capture to file everything that is seen. This makes it exceedingly easy to get

a perfect image of any conversation that takes place and to later distribute it.

Although it is rare that someone posts a captured conversation on a MUD or on a

newsgroup, it is always possible. Some people routinely capture everything they do on

a MUD in a file.

Beware of this, and use caution, but also know that most MUDs take care to ensure that

the wizards to do not abuse their powers and spy on players. Publishing a captured

conversation without the other party’s consent is highly frowned upon and could get you

ostracized from your favorite MUD(s).

If you decide to capture conversations, | recommend that you only use them as a private

reference or as evidence in the rare chance that you are harassed or threatened.

MUDs are fun, and this warning is given as just that—a warning. Relax and have fun, but
as you would in real life, be careful who you talk to and what you reveal.

Warnings
It’s time to issue another warning: On many MUDs, everything is not as it appears. I have

already touched on the fact that many players alter their genders on MUDs (and in

cyberspace in general), but that is far from the worst kind of deception that can take place
on a MUD.

Recently, articles have begun to surface about all sorts of strange Net happenings: 50-year-

old men seducing 14-year-old girls over the Net and meeting them in person; elaborate

death threats and plotting. Although these are far from the norm, they can happen.

Also be aware that on MUDs, people are not necessarily what they appear to be. This may

be because they have a MUD persona that they are living out online, but it may be because

they have the intent to deceive. I don’t want to scare you from making friends or even

developing relationships with people online, but it is important to be aware of what can

happen. Metaverse, a MOO run by Steve Jackson Games (Illuminati Online), says:

Whether you're a kid or not, remember... there are all kinds of people online,

and some of them are NOT your friends. Don’t assume you can trust everybody

you meet in the Metaverse.... If you don’t know somebody personally, remem-

ber: They might not be the age they claim to be—or the sex they claim to be.

They might be a confidence man. They might be a federal agent for any country

in the world. They might be your loony ex-husband. So don’t tell anybody

something you wouldn’t tell a stranger on the phone. Okay? Okay.

Chapter 5 ¢ MUD Social Issues

This is a great warning. Make sure you pay attention to its message. But remember, you

still can have fun—just exercise caution and common sense.

Netiquette
Before you go online, you need to learn about Netiquette—the unofficial rules of cyberspace:

@ Be nice to other people. Although this seems painfully obvious, it often is

forgotten. It is very easy to forget common courtesies in cyberspace. Respect
other people’s feelings—people can get upset or hurt by things that happen

online just as they can with things that happen in real life.

@ In cyberspace, other people are real, too. This is another common-sense

rule, but remember it. Beyond being nice, remember that everyone you interact

with is a real, live person. Treat people with the dignity and restraint you would

show them face to face. I once had someone online threaten to kill me. While I

didn’t take this as seriously as I might have because it was online, the threat

never should have been issued. I know the person would not have threatened to

my face to kill me. Respect people’s beliefs and wishes online—just as you would

with a “real person.”

@ If you wouldn’t think of doing it in real life, then don’t do it in

cyberspace. The death threat I mentioned earlier certainly falls into this

category. Another example that I have seen only rarely is online rape. Not quite

the same as real rape, online rape is more of a very explicit form of sexual

harassment. In my years of MUDding, I have never encountered an extreme case

of sexual harassment (one that overlaps into real life), but I have seen some

pretty vicious and explicit cases of online sexual harassment. This harassment

includes continuing lewd comments through tells or pages after the person

being harassed has left the room or asked you to stop. In real life, you would

never walk up to someone you don’t know and start kissing them or taking off

their clothes. You wouldn’t do these things in person, and you shouldn’t do

them on a MUD, either.

@ Help others if you can. On MUDs, and on the Net in general, you will find

that there are always people who know things you don’t know. Perhaps you

know things they don’t know, as well; or perhaps you are new to it all and lost

in the confusion. If you have knowledge to dispense or if you can help someone

new get started, do it. Someone probably helped you when you were new, and it

is only polite to return the favor to someone else.

@ Restrict your use of profanity. This is a common courtesy because some

people are offended by the use of profanity. It is especially important not to use

profanity on public channels, such as through the shout command. It’s also
important not to use profanity in messages left on bulletin boards or other areas

of public consumption. Remember that on the Internet, it is very hard, if not

impossible, to tell the difference between a 12-year-old and a 60-year-old.

Respect others if they request that you refrain from using certain offensive

phrases.

79
2QBOSSSSOGOSOS9SSOG9G GOGO 9 99SS9HSGSOH9SSOSOSOOOOSSSD!

80 Part Il © MUD Player’s Guide
BBO WOOHHHOHHHHOGHHHGHHHHHVSOHHOHHHIVDIOSVSOSGIOVVOOVOE

The Golden Rule of MUDding
Treat others as you would like them to treat you. You will get a lot farther in the MUD

world if you make an effort to follow this rule.

Here are some more rules of Netiquette and politeness that are more specific to MUDs (as

opposed to the Net as a whole):

@ No spamming. Spamming is the use of macros, clients, robots, or some other

mechanism to constantly send a message or set of messages to someone else. It is

pretty easy to set up your computer to spam, but it is very rude. For example:
Evilone tells you, "You are a jerk!" This message repeated 40 or SO times is an

example of Evilone using the tell command to spam you. Spamming in this way

often has the effect of causing one’s telnet program to choke, which results in

being disconnected from the MUD. On combat MUDs, spamming can some-

times result in death. If you are fighting a creature, for example, and the

incoming message becomes so distracting or slows you down so much, you

might make a mistake or die before you can react. Spamming someone on a

combat MUD will certainly make you an enemy.

H Get permission before using teleport. This rule goes both ways—get

permission before you teleport someone to you or before you teleport yourself to

them. You may not be able to do teleport on all MUDs, but many allow

teleporting someone to you or teleporting yourself to someone. Ask permission

before teleporting to someone so that you don’t barge in on a private conversa-

tion. Let someone know before you teleport them to you to make sure they have

a chance to finish what they are doing. On combat MUDs, you may not get this

courtesy if someone teleports in to kill your character (just to let you know ;-)).

Teleportation

If you haven't been around science fiction or fantasy before, you might need teleportation

to be defined. Teleportation is the act of moving someone or something instantaneously

from one location to another. Some common examples of teleportation that you might

be familiar with are the pods used in The Fly and beaming up in Star Trek. Teleportation

is accomplished through very advanced technology (science fiction) or magic (fantasy)

and is a common power on MUDs. Players sometimes have access to some form of

teleportation and virtually all wizards have the power to teleport. Teleporting also is

known as gating (opening a magical gate between you and your destination). On MUDs,

there usually are different powers that allow teleporting to another location or teleporting
another player character to your location.

Chapter 5 © MUD Social Issues 81
9 O9ODHSOHHSHOVOIIGHHHHHONNIOSGHHHHOHHOVHHGHOHHOHHOHHOOE a

@ Use smileys to identify sarcasm. It often is difficult to recognize sarcasm and

snide comments on a MUD because it is impossible to see facial expressions and

body language. So if you are using sarcasm (which is quite common on MUDs)

or making a comment that could be interpreted the wrong way, use a smiley to

indicate its humorous intent. A smiley is the :-) or :) (turn your head sideways

to see it!). ;-) or ;) are winking smileys and tend to mean it’s all in fun.

H No spoofing. Spoofing is the use of clever techniques to send messages that are

attributed to others. If you fake a tell from someone, this is spoofing. It’s

difficult to figure out how to spoof; even if you do, you should avoid spoofing.

What Should | Not Do in Terms of Player Interaction?
You shouldn’t do anything that you wouldn't do in real life, even if the world is a fantasy

world. The important thing to remember is that it’s the fantasy world of possibly

hundreds of people, and not just yours in particular. There’s ahuman being on the other

side of each and every wire! Always remember that you may meet these people some day,

and they may break your nose. People who treat others badly gradually build up bad
reputations and eventually receive the NO FUN Stamp of Disapproval. The jury is still out

on whether MUDding is “just a game” or “an extension of real life with game-like

qualities,” but either way, treat it with care.

The Communications Commands
Different MUDs have a wide selection of communications options because many are

designed solely for interactive communications. MUDs serve many purposes—from

theme role-playing to combat to socializing—and they have diverged in many different

directions. Because the commands for socializing have been around the longest, they are

certainly the most standard—but they are not all the same. I touch on these commands

here, and some of the MUD-specific chapters (Chapter 7, 8, and 9) touch on the

commands and syntaxes for that specific type of MUD.

After all the discussion throughout the book about how different MUDs are and how

unpredictable each MUD may be, it is interesting that the most used command is virtually

the same on every MUD I have seen—this is the say command. You use the say command

to communicate with everyone in the room with you.

The following is a sample conversation from a MOO using the say command:

Doug says, "Tarod, where did you get that name?"

say a series of books
You say, "A series of books."
Kate says, “Oddly enough, I like that song."

82 Part Il ¢ MUD Player’s Guide
DOD WDOOOHHHOGHY BOOHHHGHHHHOVDHHGHHHGHHISSGGH9SVIIS OO PSPS VVIOSGES

emma [to Doug]: Louise Cooper books!

Doug says, "Who?"
Kate says, "GOOD books!"
say yep!
You say, "Yep!"

Kate says, "Louise Cooper."
emma LOVED those books
"wow! people that recognize the books
You say, "Wow! People that recognize the books!"

In the preceding conversation, you can see how the say command is used. It is a pretty

straightforward command: Use say <message>, and your message is broadcast to everyone

else in the room with you. As you can see in the conversation, I also used " as an

abbreviation for say. The " is an abbreviation on MOOs, MUCKs, and MUSHes. On

LPMUDs and DikuMUDs, the abbreviation for say is ' but is used in the same way as ".

Many MOOs also have a version of say that can be used to direct what you say to specific
people.

Use the grave accent (') or hyphen (-) followed by the name of the character you want
to talk to.

' <name> <message>
"<name1> <name2>" <message>

“<name> <message>
"<name1> <name2>" <message>

‘Kate, what's up?

You [to Kate]: What's up?

Kate [to you]: Nothing much, you?

~kate not much, just messing around

You [to Kate]: Not much, just messing around.
Kate [to you]: Messing around onna net? It's fun.

-"kate emma" just experimenting with some of these MOO commands
You [to Kate and Emma]: Just experimenting with some of these MOO commands.

Emotions
Three important commands for expressing yourself are emote (on LPMUDs and DikuMUDs),
act (on MOOs), and pose (on MUCks and MUSHes). These are different commands that
have the same function, so for brevity I will address them collectively as emote for the rest
of the chapter, unless it isa MUD-specific example. An emote is the best way to express your
emotions online. The emote command often is abbreviated with a colon (:) to make using
it a little easier. In fact, on some systems, only the : works, and the actual emote command
does not.

Chapter 5 © MUD Social Issues 83
SOSOVSOSDSOSS OOS 8 B9GG9S9 9988 999S9G09099099690000809000

smiles.
Tarod smiles.
emote winks at you.
Tarod winks at you.

When you use emote, everyone sees the same thing. Even if five people are in the room with

me in the preceding example, they all see me wink at them (they see Tarod winks at you.).

This is one of the major drawbacks of the emote command. Unfortunately, on several types

of MUDs—specifically MOOs, MUSHes, and MUCKs—emnote is the only way of expressing

yourself without using another object that gives you some new commands.

Some LPMUDs do not allow the emote command or require that you purchase an emoter

(a special object that gives you the capability to emote) before you can emote. Also, some

LPMUDs prepend the output of an emote with *, :, or some other symbol so that the output

of the emote can be recognized as an emote.

>:blinks.

Tarod blinks.

Others in the room see

*Tarod blinks.

At first, adding the * at the beginning of the emote’s output may seem a little silly, but

consider the following example:

>:gives you 10000 gold.

Tarod gives you 10000 gold.

All you see (if the * is not used) is

Tarod gives you 10000 gold.

So you give Tarod your Sword of the Gods, and he runs off. You later wonder where that

10000 gold is, and you realize you were had. This kind of “virtual fraud” isn’t a problem

on noncombat MUDs because there really isn’t anything to lose. On combat MUDs,

though, this type of con has resulted in more than a few player killings.

84 Part Il ¢ MUD Player’s Guide
999 9HO0HHGHO9G8 9099996999 8999999993888 SS9 990996

When you begin playing a new combat MUD, learn what the output of the emote

command looks like. If the particular MUD you are on doesn’t prepend the output with

a*, :, or other symbol, be wary of any transactions. You can generally trust people, but

check to make sure you get the gold before you give someone the item.

Emotions
LP LPMUDs and DikuMUDs have some special options for expressing oneself online that are

MUD much nicer than the basic communications options available on MOOs, MUSHes, and

MUCKs. MOOs, MUCKs, and MUSHes sometimes add these options as well; for example,

SS in Chapter 7 you will learn how to turn these options on in a MOO. These commands

usually are grouped broadly under the title “emotions” or “feelings.”

I have said these commands (the “emotions”) were much nicer; by this I mean that

“emotions” offer a big advantage over the standard emote commands. When emote is used,

as you have already seen, everyone in the room sees the same message. With “emotion”

commands, you can direct your expressions to specific characters in the room with you.

This provides a broader (and nicer) way of expressing one’s self online. It also provides

more depth, as it adds perspective to the conversation. It works like this.

>smile
You smile happily.

Everyone else sees

Tarod smiles happily.

>smile raven

You smile at Raven.

Raven sees

Tarod smiles at you.

Everyone else sees

Tarod smiles at Raven.

Chapter 5 e MUD Social Issues 85

12QDDSHHOHOGHOQYVSHGS0HHS OVI H9HHHHHHHHGHOSGHSOOOH SOOO

The following is a list of the “feelings” from RealmsMUD. This list also is typical of

LPMUDs:

> help FEELINGS
ack

ahh
backhand
beam

blush
bootie

bow

burp
cherry
chortle
comfort
cringe

dammit
disagree

eep
fart

flex
fiop

french

gibber

goo
grin

growl
handkiss

hid
hop
ignore

laugh
love
nibble
panic
pinch

ponder
punch

recoil

scream
shrug
slap

snarl

snore
spit

steam

swim
taunt

tsk
whine

worship

yuck

admire
annoy

baha

beep
boggle

bop
breathe

cackle

chew

chuckle

cough
cry

dance

duck

eh

fear

flip

fly

frown

giggle
goose
groan

grumble
harumph

hiccup
howl

insult

1d

mgrin

nod

pat
pizza

pounce

purr

roll

shake

shudder

smile

sneeze
snuggle

squeeze

stretch

tackle

thank

twiddle
whistle

yawn

agree
apologize
bark

beg

boo
bored

bsigh
caress
chirp
clam

cower
cuddle
daydream
duh

explode
finger
flipoff

fondle
fume

glare

grab
grope
gut faw
hee

hmm

hug
kick

level

moan
nudge
peer
point

pout
puzzle

ruffle
shh

sigh
smirk

snicker

sob

stare
strut

tahdah
think

wave
wiggle

yeah

aha

applaud

bdance

bleed

boot
bounce

bullshit

cheer

choke

clap

crack

curtsey

die

eek

faint

flash

flirt

freeze

gasp
gloat

grimace
grovel

hair

heh

hold

huggle
kiss

lick

mock

ouch

pfft

poke

puke
raise

scratch

shiver

sing
snap

sniff

spank

start

sulk

tap

tickle

whee

wink

yodel

86 Part Il © MUD Player’s Guide

HO9 OHSS OSS89 99S 0G 96099898990 S59S 899099 SS 998008

"A
Mtup

As you can see, there is quite a variety of emotions on this MUD. You will find most of the

basic emotions on every LPMUD and DikuMUD you visit, and it’s likely that each MUD

will have some custom emotions that have been added over time at the request of the

players. You may notice that certain commands look a little different on different MUDs

(different in the way they appear when you use them). Try them out—they’re a lot of fun!

You may also notice that everyone seems to have a pet feeling or two that they use a lot—
I favor smirk and ruffle.

tell or page
You use tell (on LPMUDs and DikuMUDs) or page (on MOOs, MUSHes, and MUCKs) to

privately communicate with a specific individual, no matter where he or she may happen

to be on the MUD. Again, these two commands function the same, but have different

syntax on different MUDs so I will use tell as the generic reference to this type of

command. The player you are talking to does not have to be in the same room as you.

tell <player> <message>

page <player> <message>

page <player>=<message>

The tell and page commands are very useful to carry on a private conversation without

anyone else knowing it’s going on. The following examples show you what tell and page
look like—from the sending end and the receiving end.

On an LPMUD or a DikuMUD, a page may look like this:

> tell meaglin hi

You tell Meaglin, ‘hi'
Maeglin tells you, ‘hello’

A page on a MOO may look like this:

page jay hi

Your message has been sent to Jay.
Jay pages, "hello"

It is important to remember that in the two preceding examples, no one else sees
anything: no one in the room with you or with the recipient sees a message. If you want
other people to know that you are talking—perhaps to annoy them or for some other
reason—you Can often user whisper. On an LPMUD, for example, if someone in the room
with you whispers to someone else, you see

a

Chapter 5 © MUD Social Issues 87
YQOOSGOGO OID OSHOHHHHOOD]VHHOHHHHOSVHHHGHOHHHOOOHOOE aes

Lancer whispers something to Sliver.

Other than with the preceding message and the fact that you can only whisper to those

in the room with you, whisper is the same as tell. The whisper command uses different

syntax on different MUDs:

whisper <player> <message>

whisper <message> to <player> or whisper "<message>" to <player>

whisper <player>=<message>

whisper and tell in Role-Playing

On MUDs where role-playing is an important and integral part of the MUD, you may find

an intangible, but accepted, distinction between the whisper and tell (or page)

commands. You use whisper for in-character conversations (when you are telling your

associate in the same room that you think another character in the room with you is lying,

for example). tell, on the other hand, is used for out-of-character conversations (when

you ask your associate his real name and where he went to college, for example). This

honor system helps keep the game and real world separate, and keeps people from

exchanging game information in ways that their characters could not.

Another important distinction between whisper and tell comes only on LPMUDs and is
due to a restriction placed on tells. As touched on briefly in Chapter 3, LPMUDs charge

characters “spell points” for using te11s. This practice helps prevent spamming via te11s.

If someone tells or pages you with an annoying message a hundred times in a row, it can

be pretty annoying—and if you are in the midst of fighting a powerful monster, it can be
deadly.

Shouting
Most MUDs have shout lines or other forms of gossip-oriented communication. shout is

the most common command of this type and it sends a general message to everyone

currently on the MUD. For example,

shout <message>

sends <message> to everyone logged on to the MUD. Other commands similar to shout

include gossip and chat (for basic talk), auction (for selling items to other players), and

gratz (for congratulating other players). Some MUDs even have more chat lines called

channels for things like talking to everyone who is your race (for example, all the elves),

everyone in your class (all the priests), and many others. The shout-like commands will

vary from MUD to MUD, but they all work the in the same way as the shout command

discussed here.

88 Part Il © MUD Player’s Guide

OHHOOOOOHHHHHHHOHHHHHHIDDVQOPDHH
HIPOHB VOQH GHG IBGVOVVIVE

You shouldn’t have much trouble recognizing these global messages when you start to see

them. Shortly after you start seeing them, if you are on a very social MUD, you will

probably want to figure out how to turn some of them off. This is very MUD-specific—

some MUDs don’t allow you to turn these messages off. If you ask one or two experienced

players on the MUD, you can get a quick idea of how to turn these global messages off and

how to identify them.

As a reference (in case you encounter this), wizards on LPMUDs also have a special

command called echoal1 that allows the wizards to send any message to the whole MUD

(other MUDs have similar commands). This message isn’t preceded by the wizard’s name,

so it appears in the midst of normal activity. Sometimes rowdy (drunk or renegade)

wizards can get pretty creative with these messages. I’ve seen an echoall range from the

standard LPMUD death message, after which everyone on the MUD freaks out, to a

VICTIM-NAME tells you, ‘slanderous comment '—which can obviously make the person being

imitated (the victim, generically portrayed as VICTIM-NAME) new enemies (this is an

example of spoofing).

Who
Now that you know how to talk to people, I guess it will be pretty useful to know how to

find people to talk to—or at least see if they are on the MUD.

who
@who
WHO or +who

WHO

The preceding command gives you the list of everyone playing on the MUD. Sometimes

the who command also includes other information, such as where on the MUD each player

is and what level each person is, and some basic information like the player’s guild and

whether the player is idle or not. The who command is incredibly useful for checking to

see if your friends are currently on the MUD, to see how populated the MUD is, and to get

a feel for who the players are.

The following shows some example lines of what you might see when you use the who

command:

On an LPMUD

(5) Geran the Cutpurse (Mortal)

On a DikuMUD

{13 Wa] Vile the Human Soldier [SHOGUN Journeyman]

On a MOO

*Player name Connected Idle time Location

tarod (#99726) 7 seconds 2 seconds The Coat Closet

Chapter 5 © MUD Social Issues 89
BOO GS OOSS9SO9SSSS S808 999G0O900809OSS0000080008

On a MUSH (using +who)

Name Sex_Idle_On_For_Location (DB)__Class
Dr. Klerk (M) 4s 00:33 Dark Alley #2513

On a MUCK

Player Name On For Idle

CrystalCat 00:29 1m

As you can see, the who command varies widely among the different kinds of MUDs. It also
varies widely among each individual MUD.

Summary
This chapter gives you a good idea of the social commands available on MUDs. With these

commands, you can communicate with other players and at the very least, ask for help.

You now can see who is on the MUD. This, in tandem with the basic navigation skills you

have already learned, will make you a lot more competent than the average newbie. When

I started MUDding, I didn’t even know what say was!

With this, you are, at a minimum, equipped with most of the skills you need to become

an active citizen on a social MUD. To learn more about the specifics of individual MUDs,

you will want to read about them later in Chapters 7, 8, and 9. You definitely will want

to check out Chapter 6 and learn about MUD relationships and romance—one of the more
interesting aspects of MUDding.

~

i? y

,

:

as

—— } a

~ - > -
i y .

De
= ; , — .

OY peel se le RP OE es oh
Tse weer Bayh: me oh al a per ‘4. -

| oul) io cl asad halibal

5m @-e=
Ce)

CHAPTER

MUD RELATI

This chapter deals with adult topics. You may find some of the

discussion in this chapter to be offensive.

Many things on MUDs mirror reality, and others work in ways that are

very alien. This chapter relies heavily on personal experience and

interviews with other MUD users who have gone through some of the

things to be discussed. This chapter contains material that may be

offensive to some, but the topics discussed are taken from reality. If

you plan to participate in MUDs and never let anything from a MUD

enter into your real life, you may want to skip this chapter—but I was

also one of the people who said I’ll never meet anyone from a MUD

in real life. Boy was I wrong.

This chapter is not hard-fact and function oriented like the rest of the

book. Most of what I discuss in this chapter is much more subjective,

but I think the topics discussed in this chapter are an important part

of MUDding and cover something that needs to be discussed. I rely

more on personal experience and the experiences of other MUDders

for this chapter and less on rules—that’s because there are no rules.

Some of the narrative even leaves the MUD and enters into real life—

some of the things in this chapter really happen. Perhaps reading

about these experiences will prepare you for when you encounter

92 Part Il ® MUD Player’s Guide
HHWOOHHH HOH HD OOO OHHGHHSDVIGDGHHDDD BOVOGOSBBBSOSE

similar experiences—or you may just find it all entertaining. Whatever your motives,

what I talk about here is a part of MUDding—and for some, it is the most important part.

Some of the things I say in this chapter are discouraging. I talk pretty negatively about

online relationships and the real life relationships that may evolve out of them. I have had

several online relationships, some of which have been really good. You will recognize the

good relationships, which are pretty subjective. Therefore, much of this chapter tells you

how to recognize the bad relationships and to give you an idea of what you can expect

out of this type of relationship if you get into one.

MUD Friendships
Yes, it’s true—there are nonromantic relationships that grow out of MUDs. I have many

male and female friends whom I consider close friends. I know these friends primarily

through or from MUDs. But these friendships have not always developed the way

friendships in real life seem to develop. I have found that the camaraderie that is

developed from adventuring, and even just hanging out on MUDs, leads to the develop-

ment of very strong friendships that can carry over into real life.

In college, remember many evenings that I spent up late at night talking to people. These

were conversations that were much more open and pure than any I had before or any I

have had since. Talk spanned over politics to philosophy, and much more. In such

conversations, you reveal much of your inner self and develop your ideas as you discuss

them. These conversations never seem inhibited—they are invaluable. This is the type of

interaction that leads many to say that some of their best lifelong friends are those they’ve

made during college.

I don’t know whether this is true for everyone, but it is true for me. I believe that this kind

of openness and the extended time spent talking leads to the development of these

relationships—and MUDs have this same kind of effect.

As you may have found already, it is not uncommon to spend many consecutive hours

ona MUD. I have watched the sun come up many mornings after MUDding all night and

have had no grasp of the time passing. This immersion in the MUD environment is the

bond that binds MUD friendships together. That’s because most of these all-night sessions

were spent in a group with several other people wandering around the MUD killing

monsters and collecting treasure. On most MUDs, you have to stop and wait for monsters

to come back or heal between forays into the various adventuring regions. These down

times inevitably lead to conversations about real life, especially if you are in a group you
have spent several nights with adventuring.

This is not to say that everyone you adventure with is going to become a lifelong friend.

In fact, there are many people on MUDs | talk to when I encounter them on the MUD,

but we have no contact outside the MUD. As is the case with friendships based entirely

in our reality, these friendships have a high degree of variance in their closeness. Among

my “MUD-only” friends, there are many who know nothing about my real life and whose

Chapter 6 © MUD Relationships 93
®VQQL®QGGHS SHOW DDSHDOOVOODHGSHOHHH OOO VHHGHGHHHOOVHHOSHOGSOOOHHSOO

real life I know nothing about. Other “MUD friends” know something about my real life,

and I know something about theirs, and we talk about real life things in the course of
conversations on the MUD.

There are also friendships that develop on MUDs and that turn into real life friendships.

Not to imply that MUD friends aren’t real friends—MUD friends are, but they are not the

same as friends with whom I discuss real life issues. By real life friendships, I don’t
necessarily mean to say that I know the person in real life. I have many friends I talk to

on the phone and via e-mail whom I have known for a long time. I consider them as close
as Ido some of my friends I have met in the real world. I talk to them about real life things.

What separates these friends from MUD friends is that I talk to them on the phone and

via e-mail—communications channels outside of the MUD. This kind of off-MUD talk
tends to make a conversation more real and gives it more weight.

MUD Romance
I’ve had a wide variety of online romantic relationships. I’m going to provide examples

of the different types of relationships that I’ve seen develop through anecdotal stories.

Because I’ve (embarrassingly enough) been through most of these types of relationships

personally, I think I have a good idea about how they work. I used to say, “I’ll never meet

a girl through a computer.” If this sounds like you, you may want to read about these

different kinds of MUD romances—whether it’s because you may find yourself in a MUD

romance or because you may get a good laugh out of it. I’ve changed names to protect the

innocent (or guilty, as the case may be) and have altered some of the stories. In altering

the names, I have chosen to substitute names from Greek mythology. It is highly likely

that there are real MUDders out there using some of these names, but they are not the

players dicussed here. The names from Greek mythology are used so that I had one single

source from which to draw names. Some stories are also composites of things that have

happened to me and things I have talked about with other people.

The Worst
lll start with the worst kind of MUD romance. We’ll call the two characters Zeus and Hera.

I'll tell the story from Zeus’s perspective.

It starts innocently enough. Zeus is wandering the MUD happily killing things and ends

up forming a party with Hera so that they can go after bigger monsters. Zeus doesn’t think

much of adventuring with a female character—it’s no big deal. So they kill monsters and

explore the MUD for a couple of hours. Then both log off and go do real life things.

The next day, Zeus sees her (Hera) online again and says “hi.” They form another party

and wander off into the MUD. They talk a little more this time but about the MUD. These

casual conversations continue for a week or so. Now Zeus and Hera actually are arranging

times to meet online so they can adventure together. Zeus logs on to the MUD to see if

she is online, and if she isn’t, he logs off.

94 Part Il ¢ MUD Player’s Guide
9DHOOHOHOHHHHS HH OOH GS HOS SSB 9 9GOGOSS98 O09 GCGSSS9008

Next thing you know they are MUD married. Whoa! What? Yes, it’s true. I said “MUD

married.” Learn more about this concept by reading the “Mud Marriage” sidebar.

MUD Marriage

A MUD marriage is when two characters on a MUD get married on the MUD. This does

not mean there is a relationship in real life; the marriage is exclusively between the two

characters. The concept of MUD marriage is very alien to many people. Keep in mind that

MUD marriage isn’t anything like the real life version of marriage. Even within the MUD,

the characters aren’t quite as devoted to the marriage, and they don’t take it anywhere

near as seriously as most people take real marriage. People often propose MUD marriage

within a week or two of meeting (another example of the hyper-relationships that often

develop on MUDs). So don’t be surprised if someone proposes to you after a night of

adventuring. On MUDs that have an orientation toward more serious role-playing,

however, there may be months of friendship and flirting (“MUD dating”) before that

special MUD someone proposes to your character.

In fact, some players even have multiple characters on the same MUD that are married

to different characters. Loyalty is a little bit different in MUD marriages than it is in real

life. In fact, | know several people who are married in real life and also on MUDs, and not

necessarily to their real life partners.

Now some wives (or husbands, girlfriends, or boyfriends) may take their significant

other’s having a MUD spouse with a grain of salt and write it off as only a game—and

most of the time, it is only a game. But | would strongly recommend letting your real life

significant other know because I’ve seen some pretty crazy things happen in these types

of situations.

So keep in mind that if you get MUD married, it probably doesn’t mean all that much—

it’s a marriage between the two characters and not between the two people. It is

generally used as a mechanism for role-playing (the characters are “in love”) or just as

a symbolic thing. Occasionally, a MUD marriage is for convenience—so that one of the

two doesn’t get hit on by a bunch of strangers all of the time.

So now Zeus and Hera are “MUD married.” This marriage really doesn’t change much

except that other characters now look at Zeus and Hera as off limits. The MUD marriage

probably didn’t change much for the characters. However, I tend to want to know at least

a little something about someone before I MUD marry them, so let’s say that at this point,

Zeus and Hera have introduced themselves with their real first names.

From here things can diverge. The simple path is that the relationship remains where it
is. Zeus and Hera are MUD married, and they spend a lot of time together on the MUD.
Maybe they talk a little about real life, but not too much. The other path is the more
interesting path, which leads us to the worst kind of MUD romance.

Chapter 6 © MUD Relationships 95
2®@ @@OGSGHOOVVlHIHGHHGHOHOIHHGHHHHOOVIHOGHOHSHOOOSOOOE

Now Zeus and Hera (or one of them, anyway) decide they are interested in each other in

a more-than-MUD way. So they begin talking about more than MUD things or begin

doing things that aren’t really just “friendly”—for example, MUD sex.

Having MUD sex can be a meaningless, casual thing that is done for fun, or it can be

something taken seriously inside the confines of MUD marriage. MUD sex can be between

two real life lovers who are hundreds of miles apart (perhaps they met on a MUD). Zeus

and Hera obviously aren’t just having casual MUD sex because they are closer than just

MUD friends.

MUD Sex

MUD sex is another MUD item that may seem a bit shocking to some. MUD sex

(sometimes called TinySex—usually on TinyMUDs, MUCKs, and MUSHes) is a lot like

phone sex. As you know, most MUDs have a high degree of flexibility when it comes to

expressing oneself and communicating—and if you’re a little creative, you can use these

commands (such as say and emote discussed in Chapter 5) to have MUD sex (or TinySex,

depending on the type of MUD it is).

In fact, some MUDs have gained a reputation for being a good place to go if you want

to have MUD sex with a character—kind of like Internet pick-up spots. FurryMUCK,

discussed in Chapter 3—remember the anthropomorphic animals?—has this reputation.

MUD sex and “picking up players” is not an uncommon theme on many LPMUDs.

The MUD FAQ has some interesting things to say about MUD sex. Notice the description

of logs—you may want to make sure that you trust whomever you have MUD sex with not

to embarrass you.

What Is a Log?

Certain client programs allow logs of what you see on-screen to be kept. A time-worn and

somewhat unfriendly trick is to entice someone into having TinySex with you, log the

proceedings, and post them to rec.games.mud.* and have a good laugh at the other

person’s expense. Logs are useful for recording interesting or useful information or

conversations, as well.

What Is TinySex?

TinySex is the act of performing MUD actions to imitate having sex with another

character, usually consentingly, sometimes with one hand on the keyboard, sometimes

with two. Basically, it’s speed-writing interactive erotica. Realize that the other party is

not obligated to be anything like he/she says, and in fact may be playing a joke on you

(see the preceding explanation about Logs).

96 Part Il © MUD Player’s Guide
GQOOOVOHHHHHGH YOO 9GHHHSSS 9 OSSD OSSSDIGOVGOSG9S 2999009!

Back to Zeus and Hera—their first step out of the world of casual relationships was MUD

marriage. But that doesn’t generally mean much, and Zeus did it more for the experience

than anything else. So next, Hera seduces Zeus (in a purely MUD sense) into having MUD

sex. He finds it entertaining, so they start having MUD sex on a regular basis. Soon they

are talking a lot more, and they are even seeing each other on different MUDs.

At this point, Zeus is beginning to feel a little awkward because he wasn’t really prepared

for all this. Hera is talking about real life things and seems to be taking this MUD sex stuff

pretty seriously. So what does Zeus do to alleviate his worries? He asks to talk to her on

the phone. Hera is hesitant to respond to this request, claiming that her voice sounds bad

and that she would be ashamed. This hesitation only makes Zeus more suspicious, so he

becomes very persistent. Hera continues to resist until Zeus issues the ultimatum: Talk to

me on the phone, or it’s all over.

So Zeus gives Hera his phone number, and she promises to call him collect. Zeus anxiously

waits for the call. When the call finally comes, it only takes Hera’s first word for Zeus to

come to the horrible realization that Hera is a guy. (This does not necessarily mean to

imply that Hera is homosexual. He could have done this as part of some sort of cruel joke,

to get something out of Zeus, or just as some sort of exploration.)

Are There Limits to the Deception?
You saw how the relationship developed between Zeus and Hera in the preceding section.

The sequence of events that brought them together is not uncommon. In the following

examples, the people being discussed could have had their relationships develop the same

way as Zeus and Hera, but with a different ending. Keep that fact in mind when reading

these other examples.

Athena meets Poseidon through some friends who always hang out together on the MUD.

Although Poseidon doesn’t know any of them in real life, some of Poseidon’s friends have

played with Athena on the MUD for some time. Athena gets kind of bored in real life and

starts playing MUDs more. She is having problems with her real life boyfriend and begins
to retreat into the MUD more than usual.

Athena and Poseidon adventure together, but really aren’t too grounded in the MUD.

They talk via e-mail very early and quickly begin exchanging real life letters. Talking on

the phone also happens quickly for Athena and Poseidon. Poseidon is quick to say all the

things Athena wants to hear about her real life problems, and she gets pulled in by him.

Athena asks Poseidon more and more about himself, and they begin to talk a lot about real

life. More phone conversations occur, and more letters are exchanged. A month later,
Athena thinks she is falling in love with Poseidon in real life. They talk more and decide
they should meet in person. They make all the arrangements to meet (Athena will fly to
see Poseidon) and wait patiently and talk continually in real life—at this point Athena
believes she is in love with Poseidon.

Chapter 6 ¢ MUD Relationships 97
»®DV@QQSGGOOEYHOHHHHHOOHHHGHHHHHOOHHOHHHSSOOOHOOOD

So with great expectations, Athena gets on a plane and flies across the country to meet

Poseidon in real life. Athena gets off the plane and is greeted by Poseidon. Upon seeing

him, she realizes that it has all been an illusion. Most of what Poseidon has said about

himself has turned out to be exaggeration or fantasy. Upon arriving at his apartment, the

visit quickly becomes worse as Poseidon exhibits none of the social skills he showed over

the phone and on the MUD. He appears to have no depth or even the appearance of a life

—he is completely different than the image he painted over the phone and via e-mail.

What Athena now does is unwise. If you are a female MUDder, | highly recommend that

if you decide to meet a guy from online in person, you make the guy come to see you.

Nothing can ever be completely safe, but at least this way you’re on your home turf and

have friends and places to go if your meeting with Mr. Right goes awry. If you have just

flown a thousand miles to meet someone and it doesn’t work out, you’re stuck with this

person until you can get home. While guys certainly take a risk by flying out to meet a

girl they have met online, girls take the larger risk if they put themselves into a situation

with a guy they don’t really know. I have never heard of a rape or anything incredibly bad

coming out of such arrangements, but with the growth of the Internet, | think it should

be a concern.

Athena gets the next plane out and is gone after spending only one night of a week-long

trip. The two never speak again.

A Better Situation
It’s time to introduce a couple more people. Ares and Aphrodite meet online and start

hanging out very early. They never really go adventuring together—they just sit around

online and talk. They also start having MUD sex very early on, and it is a pretty torrid

relationship. This example is not uncommon—people hit on each other on MUDs just like

in real life, and relationships exist that have a purely (or mostly) sexual foundation. As

Ares and Aphrodite continue to meet online and have MUD sex, things become more

intimate, and they start to talk on the phone as well as on the MUD.

What happens next is also very common with MUD relationships. If you have MUD sex

with someone, there will likely be some pretty vivid exchanges—anzd if it is serious, it can

be pretty intimate. And hey, if you’re willing to have MUD sex, phone sex doesn’t seem

like such a big jump. Ares and Aphrodite made that jump. The phone conversations

between Ares and Aphrodite made their relationship much more intimate.

Not surprisingly, Ares thinks they should meet in real life, so he asks her. She agrees, and

they set a date to meet at her university. He’ll fly in, she’ll pick him up, and they’ll spend

five days together. So they plan far in advance, around spring break—which turns out to

be about two or three months away. So they continue to talk, and the anticipation builds

as the time of their real life meeting approaches.

98 Part Il ¢ MUD Player’s Guide
DOOD OOOH GHHSH99 GOOG HOGS S909 CHG994 4 9990 9 OSS 9S 9 BSS 8 SSSSS5 982098008

But in the months between the meeting and the time it is arranged, things don’t go

entirely as planned. Aphrodite starts seeing someone in real life, and the relationship

between Ares and Aphrodite begins to weaken. But they decide that they may as well go

for it and meet anyway. They’ve been through this much—may as well see it to the end.

So they deal with the things that happen up until the meeting.

They meet in the airport and immediately recognize each other from physical descriptions

and what they said they’d be wearing. After picking him up, they ride back to her

university. As you can imagine, the first meeting is awkward. Neither one has ever done

this before (meet someone from a MUD in real life—specifically someone they’ve had this

sort of relationship with), and it’s weird. There’s a lot of emotional build up, but both are
uncertain what will really happen.

That night they arrive at her dorm and talk for a while. Then they have dinner and return

to her dorm. Things have become a little more relaxed, but neither one seems to really
know how to react. So after talking for a while, it’s time to go to sleep. Because her room

is a single, the room has only one bed, thus leaving them in a potentially awkward

situation. So she invites him to sleep in her bed.

Nothing happens that night, but there seems to be something there. The next day, things

get a little heavier, and they begin kissing. But Aphrodite has to leave for the day to take

care of some family business, so Ares spends the day contemplating what’s going on. The

next day, she returns and they spend the day together. The more time they spend together,
the more comfortable they feel with each other.

The next day, it happens. They have sex. This consummation of their relationship may
well have been the beginning of the end. It does relieve a lot of the “So we’ve done all this
on the phone and online, does that mean we should do it in real life?” type questions.
Although having sex doesn’t resolve the sexual questions in the right way, it does resolve
them. The next day, some of Aphrodite’s real life friends, some of whom have MUDded,
arrive to hang out—one of which is the guy she is sort of seeing in real life. Things fall apart
from there.

After Ares leaves, they continue to meet and chat online and usually are cordial. But, they
never talk again on the phone nor do they send e-mail to each other. The relationship just
ends.

Are There Happy Endings?
You're probably starting to get a pretty dismal picture of MUD relationships right about
now. They aren’t really as bad as they seem. Just like in real life, relationships are often
rocky, and every relationship is a learning experience. Because there are different things
to learn in MUD relationships, these examples are mostly negative so that you know what
kinds of things to expect. I don’t think you'll need a lot of help if you’re one of the lucky
people who finds the right relationship.

Chapter 6 © MUD Relationships 99
POD SDH ®OSSHSS OS OG 8 S9HGS9GSS OSS 9S9HO9SH00909S9G99900880080

As isnot uncommon on a MUD, Apollo shouts something about his geographic location

one evening. Circe responds that she knows someone who lives there. Then she makes a

casual comment about someone Apollo knows on the MUD. So Apollo, being curious, asks

if he can call Circe and talk to her off the MUD. Circe accepts.

Apollo and Circe talk that night on the phone. They become fast friends. They speak on

the MUD a lot, exchange e-mail every day, and talk on the phone often. They never have

MUD sex or phone sex. The relationship is purely platonic. Or at least that’s what they

both pretend. But they decide to meet and just hang out. But both harbor expectations

of something more, although neither readily admits it.

So they meet in real life, and there’s a spark. Although they are only together for less than

a week, things become very intimate between them. A relationship springs out of that

meeting. A month later, Apollo flies out to see her again. From there they meet nearly

every month and talk on the phone every day. They don’t see other people, and they’re

in love.

They have the problems of a normal relationship over the next several months,

compounded by the problems of a long-distance relationship. Although there are rocky

moments, they stay together for nine months. Then Apollo moves to where Circe lives.

Finally, they are together.

Well, that’s almost happily ever after. They go out for another nine months before they

break up. The relationship’s end has nothing to do with MUDs. It just runs the course of

a normal relationship and ends, but it’s one of the happier MUD relationships that I

know of.

Things to Remember in MUD Romance
Here are some things to watch out for with MUD romance.

@ Real life involvement. This is a big warning sign. If the person you are

interested in seems to have some real life involvement—either an existing

significant other or someone comes along during your relationship—be very

careful. Often people will meet on MUDs and talk about problems in their

existing relationships. I’ve watched relationships develop this way, but be leery

of them. Sometimes people look for “safe” MUD relationships to escape bad real

life relationships.

@ Imbalance in the expression of feelings. If the person you are “seeing”

online says that he or she loves you or shows some equally strong indication of

feelings, and you don’t feel the same way, problems could be on the way. Or if
you feel like you love someone, and he or she never says anything of equal

emotional strength back to you, watch out.

100 Part Il © MUD Player’s Guide
DOOQQOQOHHOGHHHFVDlGOHHHHHDVQOOHHO HDHD WQOSHOGSSHSVBVVQOS’

@ Make sure the person you are involved with is the gender you think

they are. It seems pretty obvious, but it could cause big problems if you get

involved with someone who is pretending to be someone they aren’t (refer to

the example in the section “The Worst”). Before the relationship escalates into

something that spills over into real life, make sure you know the gender of the

person you are becoming involved with. A phone call is an easy way to solve this

mystery.

Following are some tips to remember:

@ Every computer has a Backspace Key. With a Backspace key, any spontane-

ous comment can be deleted or re-written before you ever see it. Remember that

every say, tell, and e-mail can be composed (written specifically with some

purpose in mind, rather than the spontaneous conversation that you might

think it represents). While it may seem spontaneous, it is certainly easy enough

to calculate every word that is said or written. So remember, everything you

“hear” online could be constructed in this way. Talk to that person on the

phone, at least, before you start to build a clear picture of him or her.

@ Be wary of that picture. If someone sends you a picture (or a computer

image) of themselves, remember that it may not be them. It probably is, but you

never know for sure. If you plan to meet someone, it is pretty self-defeating to

send a fake picture because as soon as they see you, they’ll know it’s fake and

backed by lies and deception—not a good way to start a meeting. While the

picture is probably the real person, remember that it is also a chosen picture. It’s

probably the best picture the person has, so don’t get too worked up over a
picture.

@ A picture doesn’t show everything. You could madly love someone’s

personality from talking to them for hours on the phone and on MUDs. You

could send e-mail back and forth every day. You could even have a real, accurate

picture of the person, and you find them to be physically attractive. Remember

that when you meet this person, they could have any number of traits that

aren’t apparent from pictures or words: they could have body odor, they could
pick their nose chronically, they could have obnoxious ticks that drive you nuts.

@ MUD sex doesn’t necessarily mean real sex. After you have had MUD sex
or phone sex with someone, it creates a certain expectation of what might
happen in real life. If things are serious and MUD or phone sex has occurred, it is
logical that one of the two parties may be hoping or expecting real sex when
they meet in person. But that isn’t always the case. For the reasons discussed
previously, or for some other reason, one party may decide that real sex with the
other is undesirable. Be prepared to cope with this possibility. In fact, go into the
relationship expecting this to be true.

Chapter6 ¢ MUD Relationships 101
BOS DOLOOIHYHSHOHHOVHHGGHHGHHHOVHOHGHGHHHHOHHSHHHGSHOHOOO OSES!

@ Keep your expectations in check. When getting on the plane to fly out to

meet someone or sitting in the airport waiting for them, you might think you

already love this person—and you might. But you have to give things time. It is

very rare that on first sight everything becomes real. Usually, there is some

awkward time, maybe an hour or maybe a few days—or maybe forever. Treat

your first meeting like a first date, not a reunion with a long-lost lover.

@ Hyperdevelopment of relationships is not uncommon. While you may

treat your first real life meeting with someone you met online like a first date, a

sixth date may be the next day. MUD meetings like this may go from first-date

type talk to an intimate relationship in days. When you visit someone on a MUD

and are around them for such extended periods of time, things may develop

much quicker than they do in real life. A visit of this kind can be a roller coaster

ride.

Summary
Now you have some idea of what could happen in MUD-based interpersonal relation-

ships. While some may say this never happens, you never know what might happen when

you Start talking to people. You could find yourself making a lot of new friends, or even

falling into a romance. Hopefully, this chapter has prepared you for some of what you

might encounter in the online world. Remember, people that are online can play just as

many games as in real life—or they can be just as sincere and passionate.

s = _

: a = > =

; a >
_ pea? &2etee re 7 7

NS See ee —aa as eats LD

,? a? bal $y aphat ras we — | ae A PAYS ayer a vas =
; »

iuey) Gor ernie, Fea
ee ee le Tae Ot

ap Gus ber eo > es i. nes oa .acniiteae 9
—— ——. Gee of ho alt

eS ited ™ . .
7 j'2>@ eis ae a

5 mas: Gp Apacer oe] At
o_o > @ QT? ~ eee So

> ere al? be dae :
is en on
63 a ey bie :

_ e - @

| ae

mm

7 Aes

CHAPTER

THE S@CIALIUDs-Moes,
MUSHES, AND IMUCKs —

While all MUDs are social, some MUDs have only a social aspect. But,

as used in this book, a social MUD is one that does not have a built-

in combat system. This usually includes MOOs, MUSHes, and MUCKs.

These three obviously do not have MUD in their names, and have lead

to the use of the MU* acronym as a generic term for MUDs. MOO

stands for MUD Object Oriented. The social MUDs also tend to have a

stronger tendency to allow players to create new objects; however,

some restrictions (especially on new rooms) exist.

Another difference that is found on social MUDs is that the players can

almost always create objects, and don’t need any special powers or

rank to create basic objects. Unlike on most combat MUDs, where only

wizards (see Chapter 11) are allowed to create objects and rooms, the

policy for creating objects on social MUDs is more open. Creating

objects is covered in Chapter 14 for MOOs and Chapter 15 for MUSHes

and MUCKs.

104 Part Il © MUD Player’s Guide
DOD®HOOOHHGHOHG VOGHHHHHIDVOVSHOHHHDHVIWOPDSOGIIDVQHOOOE

Different Things to Do on a Social MUD
Even though a social MUD is just a classification, it is somewhat difficult to explain a social

MUD. Because social MUDs don’t have quite the level of distractions (other than

socializing) as do combat MUDs, there must be draws. Following are four attractions of

socials MUDs that can be easily identified:

Socializing: Socializing is chatting with other players, hooking up, having

MUD sex, or whatever you find interesting. You probably can find someone else

who shares an interest with you. It is hard to describe this type of socializing—

just jump into the maelstrom and start talking to people.

Building: Building is the capability to create new and interesting objects that

do neat things, such as adding new rooms. This “god sense” (the power to

expand or create a new world) attracts some players; others just want to express

their creativity. Some players just want to add to the world. Because social MUDs

allow players to be more creative, whereas combat MUDs require that you must

be a wizard before you can create objects, social MUDs tend to have many

builders.

Exploring: Exploring, in essence, is watching or looking. Because social MUDs

enable players to build objects, there is more to look at than on combat MUDs

(where only wizards can add new things to the world). Some players spend days

just wandering around, looking at the different rooms and objects and trying to

unlock their hidden secrets.

Role-playing: Just because a MUD is not considered a combat MUD, does not

mean it cannot have a role-playing focus. Some social MUDs have strong role-

playing systems that use existing role-playing games as a base. For example, the

Amber Diceless Role-playing Game is a role-playing game that does not involve

dice and has a system of combat resolution that does not require all the statistics

that are used in many other role-playing games. This enables players to develop

their characters without worrying so much about combat, but instead focusing

on the interaction with other characters and storytelling. Most of these MUDs

have rigidly defined themes, for example, confined to the world of a series of

books, such as Anne McCaffrey’s Dragonriders of Pern series. This type of role-

playing often is much different than that found on combat MUDs.

So there you have it. You may not fall into only a particular category, but you probably
spill into at least one of them.

Social MUDs, in particular LambdaMOO, have huge numbers of players logged in
simultaneously (LambdaMOO often has more than 200 people logged in at one time).
Many players are guests or are hanging out, talking in the starting or anearby room. This
typically is called noise. If you enter a room that has 20 players talking, you probably will
lose track of what is going on. Watch out for stray noise, and as you get used to it, you
can determine your tolerance level. Then when you become overloaded with too many
conversations, just invite the players you want to talk with into a private room.

Chapter 7 © The Social MUDs—MOOs, MUSHes, and MUCKs 105

GOVOSdos 2OOVQOS SSSOSSO SSS @ 9 99O99S O08 9696890009 80806 S ee

MUSHes and MUCKs
MUSHes and MUCKs, which are in the social MUD category, closely resemble MOOs. All

three came from the original TinyMUD system. In fact, the original author of MOO was

also the original author of TinyMUCK. Because the basic commands (commands used for

communication) already have been detailed (in Chapter 5), they are not discussed here.

Chapter 14 addresses programming MUSHes and MUCKs. For a list of basic MUCK and

MUSH commands, check out the inside back cover of this book!

MOOs
Although as shown in Chapter 4, you might have to wait a bit to get your new MOO

character—especially on Lambda MOO. LambdaMOO0O is far and away the largest MOO in

existence, with more than 200 users at any given time.

Lambda MOO is only one MOO and certainly not the only MOO out there. Also of interest

is Jay’s House MOO, which is at jhm.ccs.neu.edu (129.10.111.77) 1709. Jay’s House is more

of an experimental MOO where players develop new MOO-related projects. Players

also just hang out and talk. Media MOO, sponsored by MIT’s Media Lab, is at

microworld.media.mit.edu (18.85.0.48) 8888. MOOs have many different themes; for

example, Media MOO is an academic MOO, whose stated purpose is the following (seen

by using help purpose on MediaMOO):

MediaMOO is a professional community for media researchers. It is a place to

come meet colleagues in media studies and related fields and brainstorm, to
hold colloquia and conferences, and to explore the serious side of this new

medium.

Unlike other MUDs, characters on MediaMOO are identified. You can find out who
anyone is with the @whois command (except for a few early members who are still

anonymous) so that you can contact them to continue professional discussions.

To become a member of MediaMOO you must be doing media research. We are more
interested in knowing about what you are doing than what you are interested in.

Most college and pre-college students who apply are not really doing media

research.

If you're looking for a place to hang out with interesting people, LambdaMOO is

at lambda.parc.xerox.com 8888. In fact, if you read the Usenet newsgroup
rec.games.mud.announce, you'll find a list of hundreds of MUDs and MOOs, almost

all of which have no requirements for membership.

A note to teachers:

Unfortunately, we must discourage you from bringing classes of students here.
Although these experiments are interesting, this is not the appropriate place.
MediaMOO would become a very different place if it were filled with, for
example, hundreds of freshman composition students.

106 Part Il ¢ MUD Player’s Guide
19HDOOOHOHHHSIHYVVOHHH99G99V99OGHS9DS9OG9BG999S8 99899004

Welcome!

Sincerely,

Amy Bruckman

September 1993

While Media MOO might not be the place for you, it isa good example of how MOOs are

being used constructively.

MOO Beginnings
It is easy to assume that on a social MUD, the most important commands would be the

social commands. This is not a bad assumption; however, there is a command that rates

even higher than the social commands—the help command.

help by itself gives you a list of basic topics. Help on MOOs also tend to give you a good

idea of what you might want help on. If you mistype something, for example, help will

give you one or two options that are close to what you typed. help is a good way to learn

the system and resolve any questions you may have. You also can substitute #<object

number> for <topic> if you need help on a specific object. Object numbers (#) are

introduced a little later in this chapter.

Of course, if you cannot figure out what you need to know using the help system—ask
someone.

At this point, I normally would introduce you to the important social commands, such

as say and page. If you have gotten to this point, however, I am assuming that you have

picked them up in the previous chapters. If you have skipped ahead to this point and are

not familiar with say and page, refer to Chapter S.

For convenience, Table 7.1 provides is a brief summary for your reference:

Table 7.1. MUD commanas.

Command Abbreviation Description

Communications

say <message> "<message> Says <message> to everyone in your

current environment.

-<name> <message> Says <message> to all in your current

environment, but is directed to

<name>.

emote <message> :<message> Emotes the given <message> in the

Chapter 7 © The Social MUDs—MOOs, MUSHes, and MUCKs 107
DOODLQSDOGGPS HVOF YHGHGHGHHHYHHHGHGHGHOHHHHHHHHHGHGHOOHHHHHOHHOOOHOOGE

Command Abbreviation Description

form Your_name <message>.

: 1<message> A special emote in the form of

Your_name<message>. (No space.)

page <player> <message> '<message> Sends a private <message> to <player>

whisper <message> to <player>

Player Set-Up

@describe me as <description>

@gender <gender>

@password <old password> <new password>

Other Useful Commands

look <object> 1 <object>

inventory aL

@who <player>

anywhere on the MOO.

Whispers a private <message> to

<player> in the same room.

Other players see <description> when

they look at you.

Sets your character’s gender. <gender>

is most likely male or female.

Changes your character’s password.

Looks at <object> to see its descrip-

tion.

Sees the objects you currently have in

your possession.

Sees who is currently logged on or if a

specific <player> is on.

If you already know how to navigate and play on MOOs, and you want to create objects

rooms, and more.

Object Numbers in MOOs

or program code, look ahead to Chapter 14, where you can learn how to create objects,

MOOs (as well as MUSHes and MUCKs) are different from the other types of MUDs, in that

MOOs use object numbers to keep track of everything in the MOO world. (Technically,

the difference is that players can see the object numbers; the numbers themselves are used

on most kinds of MUDs.) Every item, room, and player has its own object number. Object

numbers designate individual objects, not instances of those objects. The following is an

example of the way in which object numbers work using the ewho command:

108 Part Il ¢ MUD Player’s Guide
DODODOOHHHGHHGH OOH GH9SHFYOG9GHSISSSSSVIGSISVGE

@who
Player name Connected Idle time Location

Umber_Guest (#714) 1@ minutes @ seconds The E&l Garden

Cyan Guest (#531) 30 minutes a second The Library
Andrei (#10278) 34 minutes 15 seconds Public Library

Guest (#113) 38 minutes 32 seconds Infocenter

The umber_Guest is listed with (#714) next to the name, which indicates that 714 is his or

her object number. Object numbers are very useful on MOOs and you should note

relevant numbers for quick reference. It often is much easier to find things by object

number rather than through other methods, such as guessing what their “official” name

might be.

MOO Navigation
Some MOOs, contrary to some of the MUDs you have already seen, do not always use the

cardinal directions.

Obvious exits: library to Library Foyer, atrium to Third Floor Atrium Landing, and

common to Curtis Common

As you can see from the preceding line, the exit commands are library, atrium, and common,

none of which are cardinal directions. Once you are used to this distinction, you will find

MOOs are just as easy to navigate. You will need to pay close attention to find the exits.

To move to the Curtis Common, for example, you can use go common (if you were in the

room with the exits shown previously) or just common.

While basic navigation is fairly easy, MOOs also have advanced forms of navigation (and

teleportation). The following commands are useful for wandering around a MOO.

Remember, however, not all commands will work on all MOOs.

whereis <player> Or whereis #<player object number> is useful for locating another

player. This command shows the players object number and the name of the room (and

its object number). Following is an example of the output from this command:

Andrei [GPC] (#10278) is in The E&L Garden (#11).

Once you find out where someone is, you then can use the ¢go command to teleport your
character to them.

@go <name of a room or location> Of @go #<object number of a room or location>

For example, if you want to join Andrei, whom you know is in the E&L Garden, you could

type @go e&1 garden. Because you know the object number, however, you also could type
@go #11. If you want to join Cyan_Guest in the Library, and entered @go library, you would
see the following:

Chapter 7 ¢ The Social MUDs—MOOs, MUSHes, and MUCKs 109

POD © SLOQV®HOSOHOHHOLYOHGHHGGHOOHHHHHHHOOHHHHHHOHHOOOOGOO!

@go library
"library" is ambiguous.
Matches: The Library, Library Lounge, Library Foyer, Library (room of
Features), Library (room of Player Classes), Library (room of Rooms), and
Library (room of Things)

To actually get there, type @go the library.

@go <name of a room or location> Or @go #<object number of a room or location> teleports

you to a specific location.

@join <player name> or @join #<player object number> teleports you to a specific player.

If you don’t know where someone is or don’t feel like looking it up, just use @join to go

right to that player.

home takes you to the room you have designated as home. As a default, this is the room

you start out in when you log onto the MOO as a new character.

@sethom sets anew home for your character. You will need to get permission before you

can designate someone else’s room as your home.

@room displays list of rooms you have remembered. If there is a room you plan to visit

often, you can assign it a nickname. This makes it easier to get to that room.

@addroom <nickname of room> #<object number of the room> saves rooms for you for later

use. Once you know the object number of a room, you can assign it a nickname for easier

travel. For example, if you @addroom club #8676, and then type @go club, you will end up

in room #8676 and will longer need to remember the object number.

@rmroom <nickname of room> removes unwanted rooms from your @roons list.

@gag <player> adds <player> to your gag list. When a player is on your gag list, you no

longer see any text originating from that player. You no longer will see pages, says, or

emotes from that player. Using this command is a good way to silence annoying players

who repeat obnoxious messages.

@ungag <player> removes a designated <player> from your gag list.

@gaglist gets a complete list of the players you are gagging. This command also tells you

who is gagging you.

@sweep gives you a list of everything (players and objects) in your vicinity that potentially

could be listening to your conversation. Use this before considering MUD sex or any other

private conversation.

Special Features
MOOs have many special features and new commands that may not appear on all existing

MOOs. The following sections discuss some of these new commands.

110 Part Il ¢ MUD Player’s Guide

DODDDOHOOOHHHGHY OOOO HH0G 9D 9H9GSGGIBDISVHBBOOIO®

COrIMAND your player.

Proprietary Commands
These commands have been added to the core of the MOO on a specific MOO. These

commands work for all players. Getting access to the commands requires no actions on

the part of the user. The availability of these commands will vary widely among MOOs.

This section is really just to acknowledge that they exist.

walk to <location> is taken from Jay’s House MOO, and does not work on LambdaMOO.

Instead of teleporting you directly to <location>, this command figures out a path and

walks you to the location you specify, just as if you had navigated using the standard

directional commands. Using this command enables you to stroll through the virtual

scenery and see who is residing where.

Features
A feature is a command or set of commands that has been created by MOO programmers

for your use. Unfortunately, while many of the features appear on many MOOs, they may

take different forms.

The following is a sample feature:

sign <message>

This command does not work on Jay’s House MOO, but does work on LambdaMOO. It

displays your message to everyone in the room with you in the following form:

sign <message>

Your_name holds up a BIG sign: <message>

You will find, however, that as anew MOO character (or a guest), you cannot use the sign

command. Instead, you will need to use the @addfeature command, as in the following:

@addfeature #<object number>

The @addfeature command adds a designated feature to your character. From now on, you

will have this feature and the command or commands it has at your disposal.

If you get tired of having a particular feature, you can remove it using the following

command:

@rmfeature #<object number>

The @features command displays a list of the features you currently have activated for

Chapter 7 ¢ The Social MUDs—MOOs, MUSHes, and MUCKs 111

2ODQlOPOHSOGHHOOVIIHOHGHOHDSHHHHHHOOVHHHHHHOOOHHGHOOO

The following code shows the efeatures command at work:

@features

Feature Name

#11907 Conferencing FO
#4361 Stage-talk and pose feature
#12308 Rave's Super God-Like Features
#16688 DT's Ragin' and not so Ragin' FO

4 features found.

There is one problem with @features command. In the preceding example, you can see

feature #4361 Stage-talk and pose feature, which provides the sign command. To use the

sign feature, you need to manually add it to your character using the @addfeature

command. To do this, type

@addfeature #4361

To enable the sign command on LambdaMOO, you need to use the @addfeature #5023

command. Most of the MOOs have the same features, but they all have different feature

numbers. The preceding example is from Chiba Sprawl MOO where the sign command

is part of feature #4361, while on Lambda MOO the sign command is part of feature #5023.

So the problem is that each existing MOO probably has a feature for the sign command,

and is likely to have a different object number. The best way to find out the object number

is to ask. Players are more than willing to give you object numbers to check out.

If a player gives you an object number and doesn’t tell you what the features do, you can’t

figure them out, or you just forget, remember to use the help command.

help #<object number> gives you the run down (and the syntax) for any commands the

feature may have just added to your character.

Emotions and Feelings
Earlier, in Chapter 5, feeling commands were discussed. smile <name>, for example, enables

you to smile at a specific person and provides a prospective. Look at the following

example:

smile jen
You smile at jen.

And jen sees:
tarod smiles at you.

Everyone else sees:
tarod smiles at jen.

112 Part Il ¢ MUD Player’s Guide
8OO9OOOOHHO9GG9 OOOOH SHHG9DGHVSSHGOSB GOP VD9SOSSOOG'

The preceding example came from LambdaMOO (where names are case sensitive rather

than always being capitalized), which shows that these types of feelings are available on

LambdaMOO. To add them to your character you will need to type the following:

@addfeature #21132
@addfeature #40842

On Chiba Sprawl MOO, the features for similar commands are #207 and #257. The

commands, however, may be somewhat different so you will want to use the local help

command.

Adding the features #21132 and #40842 on LambdaMOO enables you to use the following

commands:

blake <thing> You are simply ignoring <thing>.

blush <thing> <thing> causes you to blush.

bow <thing> You bow gracefully at <thing>.

chuckle <thing> You chuckle politely at <thing>.

cackle <thing> You cackle madly at <thing>.

comfort <thing> You comfort <thing>.

cringe <thing> You cringe away from <thing>.

cry <thing> You cry at <thing>.

eye <thing> You eye <thing> warily.

eyeball <thing> You give <thing> the hairy eyeball.

feh <thing> You feh at <thing>.

french <thing> You embrace <thing> in a long, passionate kiss.

giggle <thing> You giggle at <thing>.

glare <thing> You glare at <thing>.

grin <thing> You grin at <thing>.

grump <thing> You grump at <thing>.

hug <thing> You hug <thing>.

ignore <thing> You studiously ignore <thing>.

kiss <thing> You kiss <thing>.

laugh <thing> <thing> Causes you to fall down laughing.

mess <thing> You mess up <thing>.

nod <thing> You nod to <thing>.

paperwork <thing> You make <thing> do paperwork.

pat <thing> You pat <thing> on the head.

poke <thing> You poke <thing>.

Chapter 7 ¢ The Social MUDs—MOOs, MUSHes, and MUCKs 113

GQQBOSOHHHH OLY YOHHHH9HOHVHOHHHHHHOOVHHHHOHHOOOHGOO

rtfm <thing> You tell <thing> to RTFM.

shrug <thing> You shrug noncommitally at <thing>.

sigh <thing> You sigh loudly at <thing>.

smile <thing> You smile at <thing>.

smirk <thing> You smirk at <thing>.

toy <thing> You toy idly with <thing>.

waggle <thing> You waggle your finger sternly at <thing>.

wake <thing> You wake up <thing>.

wave <thing> You wave to <thing>.

wink <thing> You wink to <thing>.

yawn <thing> You yawn at <thing>.

<thing> is an object in the room with you, which often will be a player, but actually can

be any object or series of objects. If the object you want to use has more than one word

in its name, you will want to use quotes, such as "the name of the thing". You also can use

the following for multiple “things”:

<thing1> and "the name of thing2" and <thing3>

Some commands may not support the inclusion of multiple things, but many will. You

also can use some commands by themselves. smile, for example, will depict you smiling.

So you now can also have the great feelings that are available on LPMUDs and DikuMUDs

from a MOO. I think you will find these are very useful for expressing yourself. And the

fact that they do have a perspective (the target sees the action differently from everyone

else, unlike mimicking them with the emote command) adds more depth to the interac-

tion.

Summary
You now should have what it takes to be an active social MUDder. If you are interested

in combat MUDs, move on to Chapter 8!

CHAPTER

LPINUDs: AN INTR@DUCTION
Te CemBAT MUDs

Combat MUDs are the MUDs that go beyond just the basic social

framework that all MUDs have by adding an integrated game system.

Usually this game system consists of computer-generated monsters

and a built-in system through which players fight with and kill these

monsters. By killing more monsters, the players can advance their

character in levels, making the character more powerful. Of course,

because there are levels and gold there are all sorts of new political

situations that can evolve. And it often is to a player’s benefit to team

up with other players to advance more quickly. This chapter discusses

the basics of combat MUDs and goes into the specifics of LPMUDs

which are used to present the basics of combat MUDs. Chapter 9 will

address DikuMUDs, which are the other popular form of combat MUDs.

Combat MUDs
Previous chapters have discussed the basics of combat MUDs and

social MUDs. In the preceding chapter, you learned more about

specific types of social MUDs. This chapter provides the same type of

information about combat MUDs.

116 Part Il * MUD Player’s Guide

DDBOOOOHGHHGH 99 O0OGHGOSS99 9 9 OV SS 9S9 89906

MUSH

Mee

There are two primary MUD systems that are used to run combat MUDs—the LPMUD

system and DikuMUD. These two types of MUDs are so different that a chapter has been

devoted to each. Other combat MUD systems are becoming popular, but most are spin-

offs of LPMUDs (such as MudOS) or DikuMUDs (such as Circle and MERC). DGD is

another new system that often is used to emulate LPMUDs, and has also been used to

emulate a MOO.

This chapter focuses primarily on the LPMUD system and its use as acombat MUD system.

This chapter relies on much of what has already been discussed throughout the book, as

many of the previous examples in the book were taken from an LPMUD. LPMUDs and
DikuMUDs make up the largest part of the MUD population and definitely are worth

checking out. Most are very sociable, so even if you don’t play the game itself, it still is a

fun place to hang out and talk.

Occasionally, players convert some of the more social MUDs into game-oriented MUDs.

These MUDs border between a social and a combat MUD. They usually have some

framework that allows for combat and advancement, but focus more on role-playing in

a specific genre rather than the more hack-and-slash oriented combat MUDs.

Game-Oriented MUSHes and MOOs
This section covers a small group of MUSHes and MOOs that are similar to combat MUDs,

but do not have the complete, sophisticated combat components built into the MUD

itself. While not the norm, game-oriented MOOs and MUSHes can be found and use the

same basic commands described in Chapter 7. These systems often allow you to build a

character with experience points and stats, as discussed in the MUD Persona section of
Chapter 3.

The best example of MUDs that fall into this category are a series of MUSHes based on a

role-playing game called Vampire: The Masquerade, which uses the Storyteller role-playing

system. There are over 10 different Storyteller MUSHes. Storyteller MUSHes are popular

because of their atmosphere as a role-playing MUD, the popularity of the vampire/

supernatural genre, and the real-world popularity of the Storyteller system. The Storyteller

system is acommercial role-playing system by White Wolf Games Studio, which has given

permission for the system to be used on these MUSHes.

Character Creation
The Storyteller system enables you to build characters with stats—strength, dexterity,
stamina, manipulation, charisma, appearance, perception, intelligence, and wits. It also
offers many skills, such as firearms, occult, investing, investigation, empathy, alertness,
and brawl. And finally, there are supernatural powers possessed by those characters that
are vampires, ghouls, werewolves, and mages.

New players create a character when they log in for the first time. Not only do they assign
initial statistics and skills that they normally might generate, they also define their

Chapter 8 ¢ LPMUDs: An Introduction to Combat MUDs 117
2» POQDQSDOHHHOLOOHIHHGGHHSIHHHHHHHHHOHHHHGOSO OOH OOOO!

character’s background, resources, and personality. This is the same system used in the

Storyteller role-playing system. Once the character is generated, he or she is thrust into

the world to explore and learn about the surroundings.

The Environment
Once in the world created on these Storyteller MUDs, there are many subplots and places

to explore. The worlds on Storyteller systems are based on real cities, such as Pittsburgh

and Albuquerque. Players go to clubs and interact with other players to try to find

vampires and other supernatural creatures. The players may want to kill or join these

supernatural creatures. Wizards on the system may introduce other subplots to the

players.

Sometimes on these systems, wizards will define what a player’s character does or does not

know. So, many times, the player must role-play (through his character) his actions in the

world as if he had no knowledge that there were supernatural creatures or activities taking

place in the MUD world. The character somehow must learn about these supernatural

creatures through the course of the game before trying to find them. Some of these MUDs

pursue a very rigid structure in the way that they role-play, which some players do not like.

Other Storyteller MUDs, however, are not so strict.

In the event of combat or some other action that might require an underlying system that

is built in to the MUD, a judge is called. A judge is a staff member that has been empowered

to arbitrate combat and other actions. The players describe their actions to the judge and

then the judge describes the results and does whatever is necessary to create the effects of

the combat and the character’s actions.

The results of the character’s actions often are decided by automatic dice rollers. Players

roll the dice to decide there fate. The number of dice and the results needed are affected

by the character’s skills, stats, and the action that is being attempted. All these numbers

are taken from the Storyteller role-playing game.

There are no monsters (in the automated, MUD sense) on these MUSHes; players interact

only with each other. Storyteller MUSHes are very popular, often with 80 to 100 people

logged on at any given time.

The Dark Gift MUSH is a Storyteller MUSH set in Pittsburgh that you can check out

(128.2.21.47 6250). If you decide to play on a Storyteller MUSH, you probably will need

to buy the book, Vampire: The Masquerade, so that you understand the system.

Other Systems Similar to Combat MUDs
There are several commercial systems that resemble combat MUDs in the way that they

work. The leader in this field is the ImagiNation Network, which is owned by AT & T.

118 Part Il © MUD Player’s Guide
59 OQQOOHHOGS99 OOO 9HGS9OGD BOO VS 9SBSS9SG9OG9GSSSSS9G90E

ImagiNation Network enables you to install software that creates a graphical front-end to

the MUD world. It works in a way that is somewhat similar to MUDs, substituting arrow

keys for directions and changing the semantics of many commands (or adding a graphical

interface to them). This makes using the ImagiNation Network quite different from using

MUDs.

Even though it is beyond the scope of this book to teach you how to use the ImagiNation

Network, the interface is nice, there usually are many players, and if you enjoy combat

MUDs, it probably is worth exploring. The areas of interest for MUDders probably will be

the fantasy games found in MedievaLand. The ImagiNation Network also has other

multiplayer games, such as chess, blackjack, poker, and more. It is a nice setting for both

socializing and gaming. If you enjoy MUDs, I recommend checking it out.

LPMUDs
LP Throughout this book, most of the examples have been taken from LPMUDs. As such, if
MUD you have gotten to this point, you probably are very familiar with how LPMUDs work. If

you have skipped forward to this point and are not familiar with LPMUDs, I recommend

that you read Chapter 3 on MUD personas. The description of stats and classes comes from

RealmsMUD, an LPMUD that will be used as the benchmark for this section.

LPMUDs have a very powerful language that can be used to create worlds, guilds, and

anything else one desires to create. Because this language is like the C programming

language (which many people are familiar with), many people have rewritten or added

to the basic LPMUD. So expect LPMUDs to be very diverse. See Chapter 13 for informa-

tion on this programming language and some of the different versions of LPMUD.

Because many of the commands you will use on an LPMUD have already been explained

(refer to Chapter 5S), and because Chapter 3 on the MUD persona explained the stats,

levels, and other characteristics from an LPMUD perspective, none of this will be repeated

here. This section discusses other MUD components and commands that are LPMUD-

specific and have not already been covered.

LPMUD Command Summary
For your convenience, Table 8.1 recaps many of the LPMUD commands that have been

covered in earlier chapters.

Table 8.1. Basic LPMUD Commands.

Command Description

Basic Commands

look or 1 Shows your surroundings.

look at <object> Gives you detailed information about the object. This

commonly is called the object’s long description.

Chapter 8 ¢ LPMUDs: An Introduction to Combat MUDs 119
32 @OOHGHOH HOOD IDHHHHHHHOQVHHHOHHH SOV HOHOHHOHHHOOOHOOSK

Command Description

inventory or I Gives you a list of the items you currently are carrying.

score Outputs the vital characteristics that make up your MUD
character. These statistics and numbers are the lifeblood of

your MUD character and determine his or her capabilities

in combat, spellcasting, and other MUD activities.

Communications Commands

say <message> OF '<message> Broadcasts your message in the format You say, <message>

to everyone in the same room with you.

tell <player> <message> Relays your message to the designated player wherever on

the MUD he or she may be. The designated player can be

standing in the room with you or at the other end of the

MUD. This command usually will cost your character spell
points.

shout <message> Broadcasts your message to everyone on the MUD. This

command usually will cost your character spell points.

Object Manipulation Commands

give <object> to <player> Gives the object in your possession to a player in the same

room with you.

get <object> Gets an object from the room you are in and puts that

object in your inventory (or your possession).

drop <object> Drops an object you have in your possession. Once you

have dropped the object, it will be in the room you cur-

rently are occupying.

Weapon and Armor Commands

wield <weapon> Enables you to wield a weapon that currently is in your

possession. If you get into a fight, you will be using the

weapon (and any extra power it gives you) rather than

your hands.

wear <armor> Enables you to wear armor that currently is in your posses-

sion. If you get into a fight, the armor will provide an

added level of protection beyond what you normally might
have.

A Virtual Tour
This section takes you on a virtual tour of the main city in RealmsMUD. As you move

through the city, important sites are pointed out. The most obvious starting point is the

church, because each time you log in that is where you start.

120 Part Il ¢ MUD Player’s Guide

DODBOHOOHHHHH DI HOOHGHHHHDD QVOHPBSHHSSVSSOO

The Church
Using the church as a starting point is pretty standard on LPMUDs. The church also is

important because if you die, this is where you will need to go to pray (this is discussed

later in the “Death and Dying” section).

The Church

You are in the main church of RealmsMUD.

You see a set of stairs that go down to the healing waters of

the Realms. There is a huge pit in the center, and a door in

the west wall. There is a button beside the door.

There is a clock on the wall.
This church has the service of reviving ghosts. Dead

people come to the church and pray.

******DON'T CAST SPELLS OR FIGHT IN THE CHURCH! *****

There are exits south, north, up, east, and down.

Zxaigon the utter novice (Mortal).

A magic portal, leading to many houses.

REALMS players rules

>s
You are in an open area south of the village church. To the east

is a substantial town. Forest blankets the hills to the west.
You can see the top of a massive board through the trees to the south.

There are three obvious exits: west, east, and south.

Grudge i am finally back to positive exp. (Mortal).
Minstrel Rabidchild died and lost tons of xp, but is helping newbies anyway! Go

figure! (Mortal).

Xtreme the utter novice (Mortal).

A Short Dream Post.

Grudge leaves east.
>e

Ay soc is an abbreviation for South Of Church. This is a popular central meeting place for

NOTE trading objects and gold.

Newbie Areas

A track going into the village. The track opens up to a road

to the east and ends with green lawn to the west. You notice

a small hole here.

There are three obvious exits: north, west, and east.

Taishan is getting engaged sooner than you may think....:) (Mortal).
A small hole leading down—Newbie Area.

8 ¢ LPMUDs: An Introduction to Combat MUDs 121 Chapter

POOH SS 9DGOHOH HOH VHHGHHHOHOHHHHOHOOOHOOOOE 9D OE

A small hole leading down—Newbie Area. indicates an entrance (down or d) to a newbie area.
This and other newbie areas can be quite useful for the new player. They are the best place
to go and earn some experience points and raise your character up a few levels.

>on gC

A small Iron gate stands before you. Can you open it? If so, come

to Newbieville and have a fun time! If not, maybe Talon's Keep to the
north of Flame would be a fun place for you to adventure.

There is one obvious exit: south.

This is another newbie area—if you can open the gate, you can enter. (Note, however, that

characters above a certain level— often tenth level— are not allowed into most newbie

areas.) Then you can kill monsters and accumulate treasure to your heart’s content.

Taverns and Pubs

> S$

A track going into the village. The track opens up to a road

to the east and ends with green lawn to the west. You notice
a small hole here.

There are three obvious exits: north, west, and east.

Taishan is getting engaged sooner than you may think....:) (Mortal).
A small hole leading down — Newbie Area.
Milo arrives.

>e
You are on the outskirts of the town. Short roads lead off to the south

and north. More shops can be seen to the east, and forest to the west.
There are four obvious exits: north, south, west, and east.

> n
Booo arrives.

A small yard surrounded by houses.

There are four obvious exits: north, south, east, and west.
>e

You are in The Common Man's Tavern.

This is a venerable drinking establishment.

The tavern is the center of the RealmsMUD social circle.

The Party Booth is working. Just go up.

THE NEW TRUTH OR DARE ROOM IS RUNNING. Go down.
Alcoholic:

Honey Mead 6 coins

Guinness Stout 25 coins

Whiskey 50 coins

Peach Brandy 180 coins
Moonshine 63@ coins

Sembia Wine 880 coins

Non-Alcoholic:
Cormyrian Spring Water 5@ coins
Moonshean Coffee 1@®@ coins

Apricot Nectar 28@ coins

122 Part Il ¢ MUD Player’s Guide

1DHHOHOOOHHOHHHHLOOOGHOHHHHIVDPSSGHGHHHDDOPSSHOGHIVHWVVIIOB

There are three obvious exits: west, down, and up.

An obituary paper.
A top list of players less than level 30(smaller list).
A top list of the most experienced players(top list).

A user graph hanging on the wall.
A bulletin board containing 20 messages.

An Industrial sized Trash Bin.
A sundial.
> buy mead
You pay 6 coins for a mead.
That feels good.
> buy coffee
You pay 100 coins for a coffee.
This is coffee thick and rich as river mud.

Taverns and pubs also are a core part of many LPMUDs. They provide another central

location and a good area to socialize. Also, buying drinks is a primary method of healing

both hit points and spell points. So, after you have struggled with a dangerous monster,

you will need to go the nearest tavern and have a few drinks to help your body heal. Then,

you will need some coffee to sober yourself up (probably so you can drink some more).

Some drinks may require high constitution or levels to be able to stomach them—but

anyone can drink mead and water.

You can see the obituary paper using the command read paper. Using this command

displays a list of the last 10 or 15 characters that have died on the MUD, along with what

killed them. This sometimes is useful because, by seeing which monsters killed which

characters (and what level they were), you can find out who the really nasty monsters are

and you can avoid them.

You will see the trash bin in many public places on RealmsMUD. On other MUDs, it

probably will take other forms, such as a big dragon, or its function may be integrated into

the MUD asa whole. Use the command trash <item> to throw something in the trash. This

destroys the item, which, in theory, makes the MUD run faster (providing that enough

people throw away all their unwanted items).

Graphs and Sundials

> 1 at graph
User graph by Draconian of Genesis. Patches by Animal.
W= Wizard m= mortal. The time is now 1:07

Time Users

Q000000001111111111222222222233333333334444444444555555555566666666667 users
12345678901 2345678901 2345678901 234567890 12345678901 2345678901234567890 Wizes

2: WWWnnmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmommmmmmmmmmmm 1:49, 4

1 WWWnmmnmmmmmommmmmonommmnmmmmmmmmmmonmmmmmmmmn 745, 4

2: WWWWnnmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 742, 4

3: Wanmmmmmmmmmmmmmmommonmmmmmmmmmmmmmmm to7, 2
4: Wonmmmmnmmmmmmmmmmmmmnmmmmmmmmn 1a |

Chapter 8 ¢ LPMUDs: An Introduction to Combat MUDs 123
DQQQODOOGOGHOODHHHGHHHHOV9HGHGHGOHHOOHHHHGHOSOOOO OOOO!

5: Wommmmmmanmmmmmmmmmmmnmmmmn i200, 1
6: Wnnmmmmmmmammmmmmmmmmmn t21; 1
7: Wanmmmmmmmmmmmmmmmmmm s21, 1

8: Wammmmmmmmmmmanmmmmm 7120, 1

9: Wammmmmmmmmmmmmmmmmmm : 21, 1
10: Wnmmmmmmammmmmmmmmmmmmn tee, 1

11: Wommmmmmmmmnanmmmmmmmmmmmn 225, 2
12: WWanmmonmmmmmmnmmmmmmmmmmmmmmn 29, 2

13: WWonmmmmmmmnmmmmmmmmmmmmmmmmmm 131, 3

14: \WWommmmmmmmmmmmmnmnmmmmnmanmmmmmmmm i136, 3

75: WWommmmnmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmn — 740, 3

16: WWWanmmmmmmmmnmmmmmmmmmmmmmmmmmmmmmmammmmmmn 743, 4

17: WWWWnomnmmmmmmmmmnnmmmmanmmnmmmmmmmmmmmmmmmmmmmmn 247, 4

18: WWWannmoammmmmmmmmmmmmmmmnmmmmmommmmmmmmmmmmmmmn 247, 4

19: WWWWWinnmmmmmmmmommmmmmmmmmommmmmmmmmmmmmmmmmmmm 147, 5

20 : WWanmnmmmmmoammmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmn 7:46, 4

21: WWWWammmnmmmmmmmmnommammmmmmmmmmmmnmmmnmmmmmmmmm . 247, 4
22 : WWinmmmmmmammommmmmmmmmmmmmmmmnmmmmmmmmanmmmmmmmm 748, 4

23 > WWW 749, 5
Average W:2 m:36 Total:38 (all times in EST)
> 1 at sundial

*** California *** Fri Jan 27 20:58:47 1995.

*** New York #** Foi Jan 27 23:58:47 1995.

*** Atlantic *** Sat Jan 28 00:58:47 1995.

*** Maine *** Fea jan 27.23:58:47 1995.

*** Mountains *** Fri Jan 27 21:58:47 1995.

*** Armidale *** Sat Jan 28 15:58:47. 1995.

*** Perth *** Sat Jan 28 18:58:47 1995.

*** Greenwich *** Sat Jan 28 04:58:47 1995.

The user graphand the sundial are both amusing, and sometimes useful, utilities that reside

in the RealmsMUD main tavern. Many MUDs will have similar items in their main pubs.

It is worth going into them just to see what is there. The sundial shows the times in areas
that are local to RealmsMUD players.

Bulletin Boards

> 1 at board
You can set up new notes with the command ‘note headline’.
Read a note with ‘read num', and remove an old note with
‘remove num'. :
The bulletin board contains 15 notes:

This is a great board(Rhinoceros, Sep 21)
ideas for monster pose(Rhinoceros, Sep 21)

the new Athos(Athos, Sep 23)
Where to go in the poss downtime...(Someone, Oct 17)

headline Anybody else got nscore probs?(Fiz, Oct 25)
hehehehe(Someone, Nov 21)
sundial(Erroneous, Nov 25)
re:sundial(Someone, Dec 1) OnNOnMRWNH + *

124 Part Il © MUD Player’s Guide

1DHWHWVOOOGSHGHHHGVIOHHHOHGHHDVWOWIPOGHHHDDOGOGSGOIVVVWOS

iS) UKMudmeet(Aitch, Dec 6)
10: Me(Mikie, Dec 8)

VW: re sundial(Someone, Dec 8)
123 REboot again! (Mandorallen, Jan 4)

13% re: Reboot again(Mikie, Jan 6)

14: quests(Lacroix, Jan 12)

15: alignment(Aerich, Jan 21)

Bulletin boards are plastered all over many MUDs, often covering virtually every topic.

Unfortunately, they all work differently. In general, as you can see on this bulletin board,

if you look at the board, it will tell you how to use it. For example, with this bulletin board

you can use read <number> to read a particular message. You can post a new message on the

bulletin board using the command note <title of your message> and then put in an editor

so that you can compose your message.

Shops
Shops are very important on combat MUDs. The following is a standard LPMUD shop,

and most will have a similar interface. Here you can buy items using the buy command.

For example, if I buy helmet, I will get the Mithril Helmet (medium), but if I want the Steel

Helmet (any), I would need to buy helment 2. To see all the helmets the store has avail-

able (thus making it easier to assign a number to one), type the command list helmet. You

also can type sell <item> to sell an item (any object you are currently carrying) to the

store. If you are curious about how much the store will pay you for your item, you can

value <item> and the store will give you an estimate of what it will pay you. If you sell the

item, however, expect to get no more than 1000 to 1500 gold from the shop—even if the

estimate you got was 10,000 gold. Most shops are limited to 1000 gold to keep players from

making too much money. Sometimes your character’s charisma stat may affect the

amount of money the store is willing to give you.

> Ww
A small yard surrounded by houses.

There are four obvious exits: north, south, east, and west.

= s
You are on the outskirts of the town. Short roads lead off to the south
and north. More shops can be seen to the east, and forest to the west.

There are four obvious exits: north, south, west, and east.

> e
A long road going through the village. There is a hole leading down.
The road continues to the west. To the north is the shop, and to the

south is the adventurers' guild. The road runs towards the shore to
the east.

There are five obvious exits: north, south, east, west, and down.
>n
You have entered the General store of RealmsMUD.

Items that you find while adventuring may be bought and sold here.
Commands are:

Chapter 8 © LPMUDs: An introduction to Combat MUDs

“buy item, seli item’, ‘sell all’, list’, ‘list weapons’,
‘list armors' and ‘value item'.

** NEW ** commands are.......

(You can now list armors by type)
eg. list helmet, list cloak, list boots, list ring,

list amulet, list shield, list armor, list gloves.

Behind a small sales counter, there is a hall leading north.
A sign up above the hall reads: MANAGEMENT ONLY

There are four obvious exits: south, north, east, and west.
An Industrial sized Trash Bin.

> list

1000: Mithril Helmet (medium).
3000: Magical Teddy Bear (any).

1000: Steel Helmet (any).
1000: Ring of Protection +1 (medium).
1000: Magical Bracers (any).
3000: Finely Made Scalemail (medium).

4000: Chain Mail (any).

2400: Elven Cloak (medium).

300: An empty keg.

1400: A Halberd.
800: Silver Amulet (any).

1400: Guardsman sword.
2000: Ruby Scimitar.

1000: Ghost Chains.

800: A glowing ruby amulet (any).

1000: An old short sword.
1400: Glowing Amulet (any).

1400: A shortsword.

400: A dark orb.

200: White Robes (any).

200: Angelic Mask (any).

80: A Bag of Holding.

1000: Pearl Spear.

374: A emerald tiara.
596: A copper bauble.

1506: A diamond and platinum tiara.
200: Heavy long sword.

400: A Multi-colored Scroll.

750: a crumbling vellum scroll.

998: A Ruby Ring (any).

2s
A long road going through the village. There is a hole leading down.
The road continues to the west. To the north is the shop, and to the
south is the adventurers' guild. The road runs towards the shore to

the east.
There are five obvious exits: north, south, east, west, and down.

> $
Welcome to The Adventurer's Guild

You have to come here when you want to advance your level.

You can also buy points for a new level.
Commands: cost, advance, spend, list (number).

There is an opening to the south, and some blue shimmering

light in the doorway.

125

126 Part Il # MUD Player’s Guide
1HODWOOLHDHOHGHDHOOOHHSSG9DVOV9 GHGS FB BSBOS9SSSOE

There are two obvious exits: north and south

a book in a chain.

Combat
The combat system used by LPMUDs is very straightforward. There are two important

numbers—weapon class (WC) and armor class (AC)—in the LPMUD system. Players

generally never see these numbers, but can guess at them. Sometimes you can also get an

idea of what they are from spells. Mages often have a spell called identify that gives a good

idea of a weapon’s WC and a piece of armor’s AC.

® @

Engaging in Combat
Before going any further, combat varies widely from MUD to MUD, but there is one

command that you will always find useful.

ay kill <monster name> Or kill <character name> enables you to initiate combat with the

ou monster or character specified. (Note that killing other player’s characters is never very

C@InITlAND nice and is sometimes against MUD rules.) Unless otherwise specified, this combat will

take into account only weapons that you have wielded and armor you have worn at the

time of the combat (and any that you might add during combat). Using spells and other

special capabilities that your guild or class might possess will require special, MUD-

dependent commands.

The kill command is used almost universally by combat MUDs. Now that you know how

to get into a combat, read on to find out how combat works.

Anatomy of a Monster
First, learn a little about your possible opponents. The following session shows you what

a monster in a room looks like and what the monster looks like close up.

You seem to have wandered into the lair of a few slimy green mephits. They do
not appear pleased at the intrusion. They wave their swords menacingly.
-==- There are two obvious exits: north and west.
A Green Mephit.

A Green Mephit.

> 1 at mephit

An impish little mephit stares at you curiously.
Mephit is unharmed.

Chapter 8 ¢ LPMUDs: An Introduction to Combat MUDs 127
GOE 2OSODGDL®®OOHHGHOGHHGOIGOHOGHOOHGHOIIOHHHOOHOOOHOHOO

Mephit is carrying:

An old short sword (wielded).
>

In the preceding example, you can see that the Green Mephit is carrying and wielding an

old short sword. Just like player characters, monsters can carry items and even wield

weapons and wear armor. They can also carry gold.

A Sample Combat Session
Okay, now you want to kill the poor defenseless mephit. The mephit is a pretty weak

creature that cannot really hurt you, but is a good sample combat session. (My character

on this MUD is a wizard, and I have edited my hit points to represent what they might

look like for a real player.)

> kill mephit
Hp: 99 Sp: 99

You punch Mephit in the face, sending it staggering backwards.
Mephit missed Tarod.

Hp: 99 sp: 99
You beat Mephit into a bloody pulp, causing blood to fly everywhere.

Mephit grazes you with a quick jab.
Hp: 98 Sp: 99
You punch Mephit in the stomach, knocking the wind out of it.
Mephit connects with a feeble jab to your head.

Hp: 93 sp: 99
Mephit died.
You killed Mephit.
> 1 at corpse

This is the dead body of Mephit.
Corpse contains:

273 gold coins.
An old short sword.

> get all from corpse

273 gold coins: Ok.
An old short sword: Ok.

After I attack the mephit, the MUD gives me updates of my hit points and spell points after

every round of combat (explained in the next few sections). You can see my hit points

going down (although not much) from the mephit’s attacks. After killing the mephit, I

look at its corpse to see what the mephit possessed. (Dead things leave corpses on MUDs,

just like in real life.) And finally, the all important get all from corpse enables me take the

spoils of victory from the dead mephit’s body.

Remember the get all from corpse command. Use it whenever you kill a monster. You

don’t want to leave items and gold that you have rightfully earned lying around the MUD.

128 Part Il © MUD Player’s Guide
1BDDHOOOHHHHDGVOVGHHGHSH 9 BOG9SO9GS4 9 OSVSOGO98B99 899086

Weapon Class (WC)
Weapon class (WC) comes from the weapon you wield. Usually it is a number between 1

and 20, although occasionally there are super-powered weapons that go higher. Your

hands have a WC of 3. This number is tied to the weapon, so when you wield a new

weapon, your WC will become that of a weapon plus any bonuses you may have. You

might get bonuses to your WC from your level, your guild, or certain stats. This varies from

MUD to MUD, but being a fighter and having a high strength and dexterity will be the

most likely things to increase your WC. On some MUDs, WC comes only from weapons

and is not increased by anything else.

Armor Class (AC)
Armor class (AC) is a little more complicated. Because you can wear more than one kind

of armor, this number is the sum of all the armor you wear. For example, you may have

a suit of plate mail armor that has an AC of 4, a shield which has an AC of 1, and a magic

ring with an AC of 2. If you were wearing all of these, your AC would be 7. Usually,

characters have a default AC of 0. Table 8.2 shows the different types of armor and their

values.

Table 8.2. Different types of armor and their values.

Type of Armor AC

Amulets 1-2

Body Armor (such as plate mail or chain mail) 1-5

Boots 1-2

Bracers 1-5

Chain Mail 1-4

Cloaks 1-2

Gauntlets or Gloves 1-2

Helmets 1-2

Leather 1-3

Plate Mail 4-5

Ring Mail and Scale Mail 1-4

Rings 1-2

Shields 1-3

Remember that these armor class numbers are guidelines. They can change at any time,
and there are always special objects that fall outside the normal range. But these should
help you at least guess what the AC of an item might be.

Chapter 8 ¢ LPMUDs: An Introduction to Combat MUDs 129
®@DOSGHGOOVVVOGSHOSOHOSDHHHOSHSOOIHOHGHSHSGOOVHOOSE

Usually there are guild powers and items that can be used to either identify an item (giv-

ing a rough idea of its WC or AC) or compare two items showing their relative power. You

also can try two items (in this case, probably weapons) and see which one seems to work

better; however, this usually isn’t very reliable. (LPMUD combat does have random

elements, so even if one weapon is better, you might just be experiencing some bad luck
when you try it.)

When you fight, your WC is matched up against your opponent’s AC, and vice versa. The

larger the advantage you have in the WC to AC ratio, the more damage each round you

will do to your opponent. The better AC to WC ratio that you have, the less damage you

will take from your opponent.

Rounds and Damage
Two important parts of the combat system are rounds and damage. LPMUD combat is

divided into rounds. Each round, you get an attack and your opponent gets an attack.

Intermingled with rounds, you also can use any special capabilities you may have, such

as spells, guild abilities, or items. On most MUDs, you can only use one of these items each

round, but some MUDs have no restrictions. On MUDs with no restrictions, you can cast

as many spells and use as many special capabilities and items in a round for which you

can type the commands.

Damage also is a pretty straightforward concept. When you are hit, you will take damage.

This damage shows up as a deduction from your hit points. The more damage you take,

the lower your hit points will go. If these points go to zero, you die. To keep from dying

in combat situations, you will want to use wimpy, which is a very useful command.

wimpy <number> allows you to set your character’s wimpy. Wimpy is a number between

1 and 100 that represents a percentage of your character’s total hit points. If your current

hit points fall below that set number, you will automatically run away from a fight. If you
never want to run away from a fight, set your wimpy at @. Suppose that when your

character is fully healed, he or she has 200 hit points and his or her wimpy is set to 50,

and then he or she goes into combat. If your character is dealt a blow that pushes his or

her hit points below 100, your character will run away. Unfortunately, he or she will run

in a random direction through the available exits.

Some MUDs have the additional command wimpydir <direction> that enables you to set

the default direction your character will take when he or she wimpies.

> $ Set your wimpy at 50. Better safe than dead.

TIP

Remember to heal yourself regularly (especially after you wimpy). As shown in the Virtual

Tour, you can heal in pubs. You also can find items to heal yourself—look for healing

130 Part Il ¢ MUD Player’s Guide
DOOOOQGOHHHHHHHDLOHOHGHHHHYVOVDSOHOGDBVOSSOHGHHODVWOIVHE

potions and carry them with you. Some guilds also can heal (usually priests or clerics). You

may have to run back and forth between a monster and a pub several times before you can

kill the monster.

®

Partying
This kind of partying is not the traditional drunken revelry. MUD partying is forming a

party of adventurers that can kill monsters together. Some MUDs give characters the
capability to band together and share experience as they kill monsters. On many older

MUDs, only the player that actually deals the killing blow to a monster receives any

significant experience points. Forming a party allows the computer to automatically

divide among the party members all the experience gained. Sometimes the experience is

divided equally, sometimes the members of the party divide the number of shares, and

sometimes the computer decides based on the levels of the party members.

The specific commands for forming parties and sharing experience varies widely. There

is no standard format for partying. You will need to ask around on the MUDs that you

choose to play to get the specifics for that MUD.

Death and Dying
Following is the most dreaded thing you will ever see on an LPMUD:

You die.

You have a strange feeling.
You can see your own dead body from above.

If it happens, you will need to find your way back to the church and do the following:

> pray
You feel a very strong force.

You are sucked away...
You reappear in a more solid form.

Unfortunately, praying has its penalties. On RealmsMUD, you will lose one-third of your

experience points when you die. You also will lose two points in your stats—usually one

point each from two random stats (such as strength, intelligence, dexterity, wisdom,
constitution, or charisma).

a

Chapter 8 © LPMUDs: An Introduction to Combat MUDs 131
29QQVWIHDGGHGGHOPHHVHHGGHHHLOYDHHHHGHHHOOOHHOHOHHOOOOOOOOE

Advancement
When you use the score command, you will see a lot of information about your character,
but the most important line will be

You have 22% of the experience needed for the next level.

or the number of experience points you have. If you see the preceding line with a percent
sign, and it goes over 100%, it is time for you to advance. If the MUD you are on provides
you with your actual number of experience points (rather than the percentage), you will

need to use help levels Or <guildname> levels to find out how much experience you need

for your next level. Once you pass the listed number of experience points for your next
level, it is time to advance.

When it’s time to advance, you will need to go to your guild and advance. The following

is an example of what you might see in a guild room (this example is the fighters’ guild):

Everyone one of us has heard the call! Brothers of true metal, proud and

standing tall! We know the power within us has brought us to this hall!
There's magic in the metal! There's magic in us all!

You now stand in the middle of the main hall in the Fighter's Guild.
The ancient walls of stone are covered with many tapestries of past and
present heroes. Perhaps your face will appear here one day!

The images of Animal, Gor, and Barbie appear here dressed in

full battle armor and wielding their own fearsome weapons of steel!

Here you may: join, advance, points, spend, fix, and list.
New command: choose <subclass>. you must pick barbarian or paladin!

There are three obvious exits: south, west, and north.

join enables you to join the guild. You must be an adventurer or have no guild before

you can join. There are special places where you can renounce your guild (which has a

significant experience point penalty) so that you may join a different guild.

advance enables you to advance a level after you have accumulated enough experience

points (you must go through your guild to do this). Advancing probably will give you new

skills and certainly will improve your hit points and spell points. You also will get one stat

point to spend on increasing you stats.

points shows you how many stat points you currently have to spend.

spend <stat> enables you to spend a stat point. When you use the spend command, it

increases the designated stat by one. <stat> can be str, dex, int, con, wis, or chr, for the

respective stat.

continues

132 Part Il ¢ MUD Player’s Guide

DODHOHVOOHHHHHHVDLQOVHHHHH HD VLSSSGHOISB VIO SP OGHGIDOH

fix enables you to fix the occasional weird things that happen on MUDs. For example,

sometimes things break or fail to load properly. If your guild commands suddenly do not

work, go to your guild and use the fix command.

list enables you to see which quests you need to complete. (For more information about

quests, see Chapter 11.)

Summary
This chapter is just the beginning of what you can do on LPMUDs—there is much more

to learn! Because each LPMUD has its own idiosyncrasies, enhancements, and modifica-

tions, they may act and behave differently than what has been described in this chapter.

You will find that many MUD players are friendly and helpful with newbies. Often, other

players will give weapons, armor, and gold to new players. Sometimes there are strings

attached and sometimes it is just for fun. If you have any questions, ask; someone probably

will answer you.

You'll find that once you get the basics, it is very easy to learn about all the new things

you will encounter in the MUD world. Don’t forget, there are always people to ask when

you need help. So get online and check it out.

CHAPTER

DIKUMIUDs

Since the first MUDs appeared in the 1970s, their development has gone in one of two

directions: combat and social. The combat games (often called “hack-and-slash”) tradi-

tionally center on the violent exploits of each individual character, whereas social MUDs

lack the “gaming” element of MUDding. DikuMUDs, named after the Danish abbrevia-

tion for the University of Copenhagen where it was developed, are a compromise between

these two basic styles. Adventuring and combat are the mainstays of the Diku world, but

players usually are encouraged by the types of situations and problems which they face

to work together and communicate.

Thus, the DikuMUD is a world of interactive gaming that stresses player collaboration and

cooperation along with the sheer combat activity of a player’s individual “character.”

Many of the new DikuMUD systems offer elaborate “clan” systems that bring a political

element into the game. Combined with CPU-efficient coding for fast operation and

support for numerous simultaneous users, a large “virtual world,” and enhancements that

increase user-friendliness and playability, the DikuMUD community is one of the fastest

growing online game platforms on the Internet.

Finding DikuMUDs

The Internet newsgroup rec.games.mud.announce is a good place to look for new

DikuMUDs—postings to this group announce the status of new MUDs of all types. For

information specific to Diku systems, the newsgroup rec.games.mud.diku is dedicated to

the discussion of DikuMUD gameplay, programming, and related topics. Also, the

DikuMUD FAQ (list of frequently asked questions about DikuMUDs) often is posted here.

134 Part Il © MUD Player’s Guide

DDDQOWVOGHDHHHH HD VOVHHGSHHHS VOSOGSHGIOD IVOOBOOE

Tour of the DikuMUD World
We now will take a tour of the DikuMUD world, exploring the “town of Midgaard”—a

common feature to virtually every DikuMUD. Some of the most important functions of

the Diku system will be illustrated and explained here, while more detailed descriptions

of different gaming aspects follow later in the chapter.

After logging on to a DikuMUD system and creating a character—here we have connected

to Realms of Magic (Internet address p106.informatik.uni-bremen.de OF 134.102.216.8 4000)

and created a warrior character named “Bub”—the Diku system starts the new player off

in the Temple of Midgaard.

> who

Players

Doran the humble

Bub the Swordpupil
Shayla the Dalai Lamia
Hendrek the Troll-Swordman

Bobby the Fencer
Tommyknocker the Recruit

DeLormar the Levite

Io the Warrior

8 characters displayed.

who prints a list of other players currently connected to the DikuMUD. Many systems will

automatically paginate long lists of players—you will be asked to press <return> to view

subsequent pages of text. A related command is finger <playername>, which returns

information about a particular character on most Diku systems, often telling you if the

player is logged on or when the player was last logged on.

The DikuMUD World
When you play a DikuMUD, you are submerged in a fantasy world that simulates several

aspects of “real life” as a part of game interaction. You must guide your character around

the world, command him or her to pick up and wear objects, and even occasionally eat

or sleep. The command interface is relatively simple, relying on command words and

simple sentences to order your character to perform certain actions. The following

sections describe the commands necessary to perform basic actions such as walking,

manipulating objects, and wearing equipment.

Chapter9 ¢ DikuMUDs 135
2 @®DGVOGHGSVOHVOSHHGHGHHHLVHHHHHOGGHHOOHSHHHHOHHOOOOOOGE

Movement

The first concern of the new DikuMUD player is movement. How is the world navigated?

Howis the environment described, and what parts of it can be manipulated? This first part

of the tour presents these MUD basics, readying the new player for exploration of new
“virtual territory.”

Direction Commands
Maneuvering your character around the DikuMUD is much the same as on the MUD. You

“walk” by typing compass directions: north, south, and so on. You can abbreviate these

commands as n, s, e, w, u (for up), d (for down), and so on.

If you have the speedwalk function engaged, you may have difficulties maneuvering if

your DikuMUD contains diagonal directions (such as NW for northwest). See “Navigat-
ing the DikuMUD World” for more information.

Room Descriptions
The descriptions of the DikuMUD’s virtual rooms contain information about the appear-

ance of the room, the name of the room, objects contained in the room (including

monsters or other players), and the visible exits from the room. Notice all of the objects,

room exits, and area descriptions in the following session:

>w
The Temple Of Midgaard

You are in the southern end of the temple hall in the Temple of Midgaard.
The temple has been constructed from giant marble blocks, eternal in appear-
ance, and most of the walls are covered by ancient wall paintings picturing

Gods, Giants, and peasants.
Large steps lead down through the grand temple gate, descending the huge

mound upon which the temple is built and end on the temple square below. To the
west, you see the Reading Room. The donation room is in a small alcove to your

east.
The TOP TEN board is standing here.
An automatic teller machine has been installed in the wall here.

> §
The Temple Square

You are standing on the temple square. Huge marble steps lead up to the
temple gate. The entrance to the Clerics Guild is to the west, and the old
Grunting Boar Inn is to the east. Just south of here you see the market square,
the center of Midgaard.
A large fountain carved from blue-streaked marble is here, bubbling merrily.
A Peacekeeper is standing here, ready to jump in at the first sign of trouble.

cs

136 Part Il ¢ MUD Player’s Guide

GODHOHOOHHHH9HDVIOHOHHHHDD 9HO99OHSDB BSS OG GOSS SO S8096

Market Square

You are standing on the market square, the famous Square of Midgaard. A large,
peculiar looking statue is standing in the middle of the square. Roads lead in

every direction, north to the temple square, south to the common square, east,

and westbound is the main street.

>e
The Main Street

You are on the main street crossing through town. To the north is the general
store, and the main street continues east. To the west you see and hear the

market place, to the south a small door leads into the Pet Shop.

HonkMan the Recruit is standing here.

Movement Messages
The you cannot go that way... message indicates that you tried to go in a direction that

does not have an exit. Note that some DikuMUDs include one-way doors, and areas in

which passages change their routing (mazes) where you can easily get lost! Notice what

happens when you attempt to move in an “illegal” direction:

>e
Alley at Levee

You are standing in the alley which continues east and west. South of here
you see the levee.

A mercenary is waiting for a job here.

>on
Alas, you cannot go that way...

Short Description Mode
The descriptions provided by the DikuMUD contain a great deal of information about the

environment. Note that you can abbreviate the display on most DikuMUDs by typing

brief, which causes the MUD to send only the name of the room and objects and

monsters/characters contained in the room—the description will not be displayed
automatically. To switch back to verbose mode, where all information is displayed, simply
type brief a second time.

Room descriptions usually appear as follows when brief mode is set:

>brief

Brief mode on.

> e ,

The Main Street , _

Chapter9 ¢ DikuMUDs 137
2@OOGSOSOOOE ©9®PBDSGHGGHLO PD OHGHOHHOOQVOHHOHOOOVIOSOE

> s

Entrance Hall to the Guild of Swordsmen

=e
The Bar of Swordsmen
A waiter is here who looks like he could easily kill you while still carrying
quite a few firebreathers.

Equipping the Character
The capability to maneuver around the Diku world is not enough for success in the game,

however. Characters must be properly equipped to deal with the rigors of coming battles.

This section highlights essential aspects of play, from picking up objects and purchasing

supplies to readying armor before a fight.

Getting and Carrying Objects
You will need equipment as you adventure in the DikuMUD world—the better armor and

weapons you possess, the more able you will be to fight the aggressive denizens of the

virtual world. get <object> will tell your character to pick up a specific item, and get all

will cause the character to attempt picking up all “loose” objects in the room—up to the

maximum carrying capacity of the character. Note that you have limited strength and

“space” for objects in your inventory, and the stronger your character, the more you can

carry (see “Character Attributes”). To see what you are carrying, simply type i for

inventory.

Midgaard Donation Room
You are in a small, undecorated room just off of the main temple. There are a

couple of small wooden benches here where people occasionally sit while they

wait for items to appear. The temple is to the west.

A piece of cloth is lying on the ground.
A buckler is lying on the ground.

A small used torch.
A small loaf of bread lies here, looking a bit green.

A small wooden sword with a short, stubby blade is here.

> i

You are carrying:
a small bread
an almost burned down torch

> get all
You get a cloth armor.

You get a buckler.
You get an almost burned down torch.
You get a small bread.
You get a small wooden sword.

138 Part Il ¢ MUD Player’s Guide
1D OO B® WQOGHHHGHHHVOGHHHHHDDVWIOSHGHHHDD]VWPIOSSOHID OOO

e ®

Wearing Items—Equipping
Before your armor and other equipment will aid your character, you must wear <item> Or

wear all to attempt to wear all “wearable” items currently in your inventory. You also may

remove <item> Or remove allin the same manner to quit using a certain piece of equipment

(this is necessary when you want to change from one piece of armor to another, for

example).

> wear all

You start to use a buckler as a shield.

You wear a cloth armor on your body.

Wielding a Weapon
Before you fight, it is necessary to use the wield <weapon> command to prepare a specific

weapon for combat, which essentially is holding a weapon in your hand (note that this

function is not accomplished by wear all). As with the wear command, you may remove

<weapon> to unwield it. In addition, you can grab <weapon> to hold a second weapon. Certain

classes may be able to attack with both weapons, and on certain Diku systems, your

character gets the hit and damage bonuses for the second weapon applied to the attack
(see section on “Combat Modifiers” for detailed information).

> wield sword

You wield a small wooden sword.

List of Equipment
The equipment you currently are wearing or wielding does not appear in your inventory.

Rather, it shows up in the eq list, which is displayed when you type eq. Items that are worn

usually do not count toward the limited number of objects that you can hold in your
inventory, but do add to the total weight that your character can carry.

The following text represents the eq command output on a “typical” DikuMUD:

> eq

You are using:

<worn on body> a cloth armor

<worn as shield> a buckler
<wielded> a small wooden sword

Chapter9 © DikuMUDs 139
2OOQQOSHHHGOHOVIVOSOOHSH HOI IHHHOHHHOOIVHHSHHHHOOVSHHOOO

®

Buying Combat Equipment
To be successful in combat, characters must be properly equipped. Stores cater to this

need—provided you have the money to buy their goods. Weapons and armor are sold in

shops on every DikuMUD:

> Ss
The Armory

The armory with all kinds of armors on the walls and in the window. You see
helmets, shields and chain mails. To the north is the main street.

On the wall is a small note.
An Armorer stands here displaying his shiny new (and previously owned) armors.

> list
You can buy:

buckler for 2 gold coins.
pair of leather gloves for 75 gold coins.

chain mail shirt for 2500 gold coins.

pair of leather pants for 150 gold coins.
leather cap for 150 gold coins.

studded leather jacket for 500 gold coins.
shield for 1@@ gold coins.

breast plate for 18000 gold coins. rPPrPrPrrrrr

Stores like the one mentioned in the preceding code are scattered throughout DikuMUD

worlds, offering to sell certain standard equipment, as well as special items that have been

found and sold by other players.

Miscellaneous Shops
You will find stores and shops in Diku worlds that sell items other than armor and

weapons. Merchants will sell you bags, torches, and other miscellaneous necessities. Also

common are food and water sellers.

>e
Eastern end of Alley

You are standing at the eastern end of the alley, the city wall is just east,

blocking any further movement. There is colorful graffiti sprayed on the wall.

A small warehouse is directly south of here and a mexican food
stand has been set up north of here.

A mercenary is waiting for a job here.
A mercenary is waiting for a job here.

>n
Uncle Juan's Eatery

140 Part Il © MUD Player’s Guide
GGHOOWHDOOHHHHHYHYOHVGHHGIS VOVVBODSBSE

This place makes your nose run just from the smell of the spicy food they

sell. Spicy as it may be, it still looks very tasty. A box of taco shells is

set on the counter.
There is a large, friendly sign hanging on the wall here.

Uncle Juan is here ready to take your order.

> list
You can buy:
Some nachos with cheese for 5 gold coins.
A spicy hot burrito for 10 gold coins.
A Mexican taco for 15 gold coins.

(later in the session...)
>

Ye Olde Water Shoppe
You are in Wally's World 0O' Water, whose proprietor, Wally, is sure to have

something to meet all of your water needs. Wally the Watermaster is standing
behind the counter, proudly displaying his fine collection of contemporary

waters.

> List
You can buy:

A canteen of clear water for 45 gold coins.

A bottle of clear water for 10 gold coins.
A cup of clear water for 2 gold coins.

> buy canteen
Wally the Watermaster tells you "Sorry, but here, no money means no water!"

It is easy to forget to carry water with you as you adventure—be sure to always have a

canteen, and type fill canteen fountain when in the temple square to replenish the

supply periodically.

Store Commands
When you are in a store, you can list the available merchandise, buy <item> to buy

something, sell <item> from your inventory, or value <item> to find out how much one

of your items is worth. For example, if you try to buy food with no money, you will see:

> buy taco

Uncle Juan tells you 'No dinero! Hit the road!'

Donating Equipment
Most Diku systems support item donation, where items that you specify by typing donate

<item> will be transported to a donation room somewhere on the MUD (usually-a room east

Chapter9 ¢ DikuMUDs 141
92 @O@OGOGHHHLHVHHHGOHGHOIIVHSHHOHGOVIIOHSHHHHOOOV HOSE

of the temple of Midgaard) where other characters may pick up and use your unwanted

items. Make the following procedure a habit, as your donations will aid other players.

>i
You are carrying:
a small bread

an almost burned down torch

> donate torch ;
You donate an almost burned down torch. It vanishes in a puff of smoke!

Emotions
The Diku world is often quite descriptive. Many commands allow you to describe

“everyday” actions and gestures. Showing “emotion” and mood in this way helps add to

a character’s personality:

> sigh
You sigh.

> wave juan

You wave goodbye to Uncle Juan.

To make your interactions with other players more interesting and “colorful,” most

DikuMUDs provide a number of commands that describe your emotional state, actions,

and so on. Wave and sigh are just two of the commonly supported commands—see your

individual DikuMUD’s help screen for more information.

Training the Character
As essential as outfitting a character with weapons and armor is making sure that the

adventurer is properly trained. Skills and spells allow characters to effectively fight,

successfully cast their incantations, and better tackle the problems they face in the

DikuMUD environment.

Guildmasters and Practicing
Characters in the DikuMUD world have skills (and sometimes spells) that must be trained

before they can be used by the character. On most Diku systems, you cannot use untrained

skills and spells at all—you will have a zero-percent chance of success. The higher the level

your character obtains, the more useful and powerful skills and spells available to that

character will be. Characters earn training sessions (listed in the score display) as they gain

142 Part Il ¢ MUD Player’s Guide

1B @WBWOOHHHOHHHHOHOOHHHGHHHHHHVPSOGHHODOVSOPIHGIOE

levels—these are in turn used to improve individual skills and spell capabilities. You can

obtain a list of skills using the sk command (spells are listed with spells or spe). When in

the presence of your guildmaster, use pra <skill> to improve a skill or spell in a training

session. That is, a training session is subtracted from your total training sessions (listed

under the score command display), and the proficiency of the character in the trained area

is increased.

The following session demonstrates the output of the skill command (example uses the

sk abbreviation), and a sample interaction with a guildmaster:

> sk
You know the following skills:

Level Skill How Good

1 kick (bad)
A bandage (bad)

1 riding (not learned)

> s
The Tournament and Practice Yard

Your guildmaster is standing here.

> pra
The Guildmaster says "This is what I can teach you:"

1 kick
1 bandage
1 riding

Skill Training Messages
When training skills or spells, the message You Practice for a while.. indicates that you

have successfully practiced a particular skill, whilethe message You do not seem to be able

to practice now indicates that you have no remaining training sessions. The You have now

mastered that skill message alerts you to the fact that you are completely proficient in

a certain skill area or spell.

You will be informed by the MUD when you have successfully trained in a skill or spell.

The Guildmaster will also tell youif you have insufficient practice sessions to train, usually

in the following manner:

> pra kick
You Practice for a while...

> pra kick
The Guildmaster says "You do not seem to be able to practice now."

Chapter9 ¢ DikuMUDs 143
IDOBVSSSS9S SO SOS OSOS9G90909 9695956990808 80008

Character Health
Monitoring and maintaining the health of your character becomes important as you roam

the online world, traveling great distances and fighting along the way. Food, drink, rest,

and sleep are all important in keeping your character in peak condition. This section

highlights the daily—yet important—process of eating and sleeping.

Score

The score command is universal on DikuMUDs—every Diku system will display the basic

traits and status of your character in this manner, and many will give you even more

detailed information including statistics, armor class values, and active magic spells or

modifications that somehow affects the character. The section on “Character Informa-

tional Commands” provides a more detailed discussion of these individual attributes.

2 Sc
You are a 17 year old male Human and about 1.6 m tall.

* It's your birthday today *
You have 24(24) hit, 100(1@@) mana and 80(83) movement points.
You are almost naked, and your alignment is ‘Neutral’.
You have scored 1 exp, and have @ gold coins.

You still have practice sessions left.

You need 1999 exp to reach your next level.

You have been playing for @ days and @ hours.
This ranks you as Bub the Swordpupil (Level 1).

You are standing.

Saving Your Game
Just like other work on a computer, your progress in a DikuMUD game must be saved to

disk. While not having to do strictly with character health, the habit of saving your

progress after major accomplishments may well save your (the player’s) sanity! This

saving process is normally done automatically, but you can force the system to save easily

at any time:

> save
Saving Bub.

save instructs the DikuMUD to record the status of your character in its player files, so that

there is a record of your current achievement in the case of a system failure or other event

that would otherwise erase the changes to your character since your last save. Many

systems automatically save every few minutes, but be sure to manually save after gaining

levels, finding good equipment, and winning tough battles.

144 Part Il # MUD Player’s Guide
1OOBDOHHOHHHHHGGH YOO HGHSHH GSH 9OGSHDGH GD BVIOVVP9GBSSBVOK

Food and Drink
In the DiktuMUD world, you must eat and drink periodically to keep yourself from starving

or dehydrating. Although you cannot die from either condition in the game, you will not

regenerate (heal yourself and gain back spell and movement points) without doing both

on a regular basis. The message You are too full to eat more! indicates that you are fully

satisfied, and will regenerate normally.

It is wise to carry food in your inventory, so that you can eat when your character becomes

hungry. The MUD will inform you when your stomach is filled.

>i

You are carrying:
a small bread
an almost burned down torch

> eat bread

You are too full to eat more!

Character Fatigue
Adventuring in the Diku world can be hard work, and your character will eventually need

rest, to heal wounds quickly, and regain the ability to move around the MUD. Your

character inevitably will suffer damage in combat, lose spell points, and run out of

movement as you adventure in the DikuMUD world. You may periodically want to type

sleep Or rest to recover points faster. Note, however, that you cannot perform other

actions while resting, and when sleeping, you cannot even see what is going on around

you. Regeneration, however, is much faster when asleep. You then can wake your character,
and stand to get back on your feet.

This process is accomplished easily, as follows:

> sleep
You go to sleep.

> wake

You wake, and sit up.

> stand
You stand up.

Combat
While social interaction forms bonds between Diku players and exploring provides hours
of entertainment, the game still centers around combat. Through successful combat

Chapter9 ¢ DikuMUDs 145
2 BDODOGOVVIYOGHHHGHHOQIHHGHHSOOOOH9OOG!

characters gain experience so that they can advance to higher levels, and obtain

equipment and gold. This section provides an overview of DikuMUD combat, from

initiation of battle to the final resolution of conflict.

“Considering” an Opponent
It often is useful to have a rough idea of the capabilities of an enemy before beginning

combat. The con <target> command gives you a rough estimate of the difficulty of a battle

with the target monster or individual. Note, however, that this estimate often does not

take into account spellcasting capabilities and the like, which may make combat much

more difficult—proceed into combat with care. Results of You ARE mad! and You are a dumb

player for even considering, two messages common to many DikuMUDs, indicate that the

target creature is much more capable than your character—beware! Notice the message in

the following session:

> Ww
Main Street
A beastly fido is mucking through the garbage looking for food here.

> brief

Brief mode off.

> W
Main Street
You are at the end of the main street of Midgaard. South of here is the

entrance to the Guild of Magic Users. The street continues east towards the

market square. The magic shop is to the north and to the west is the city

gate.

2s
Entrance to Mage's Guild
The entrance hall is a small, poor lighted room.

A sorcerer is guarding the entrance.

> con sorcerer

You ARE mad!

The con <target> command (short for consider) gives you an estimate of the difficulty

of a battle with the target monster or individual.

Initiating Combat
Your existence in the DikuMUD world revolves around combat. You often will have to

begin a fight with one of the denizens of the MUD world, as only a few are aggressive

enough to initiate combat themselves. The command kill <target> engages the target

146 Part Il @® MUD Player’s Guide
DDO OOOOH G9GOGS 9990S 90949 8909969069088 98899 S699 84

creature in combat. Note that some classes of character may begin combat in other ways

(by casting spells, using the backstab capability, and so on)—these alternate methods are

covered in the “Character Classes” section. Creatures known as aggressive monsters will

attack when you enter the room, so caution must always be used when investigating new

areas.

As soon as a player begins adventuring in the Diku world, they begin to engage in combat,

as in the following sample session:

>e
Main Street

You are on the main street passing through the City of Midgaard. South of

here is the entrance to the Armory, and the bakery is to the north. East of
here is the market square.

A beastly fido is mucking through the garbage looking for food here.

> con fido
Fairly easy.

> kill fido
You miss the beastly fido with your pierce.

kill <target> initiates combat against the target creature.

Issuing Commands in Combat
You can issue certain commands in combat, often initiating a skill attack possessed by the

character (the kick capability is the example given here). Also, changes may be made to

a character’s worn equipment, wielded weapon, and used objects in the midst of combat.

Furthermore, it often is possible to use items such as potions, scrolls, and other magic

items during combat.

Combat messages indicate the success of the player (and his or her opponent) in dealing
damage, as in the following session:

>

The beastly fido tickles you as he hits you.
You miss the beastly fido with your pierce.

> kick
Your beautiful full-circle kick misses the beastly fido by a mile.
>

The beastly fido misses you with his hit.
You miss the beastly fido with your pierce.

Chapter9 ¢ DikuMUDs 147
DHDOOLIHDSGHHOH OVI YHOHGSOGHOQIHHHHGHHHOOVOOSOE

> kick
The beastly fido misses you with his hit.
You miss the beastly fido with your pierce.

> kick

The beastly fido misses you with his hit.
You miss the beastly fido with your pierce.

>

You miss your kick at the beastly fido's groin, much to his relief...

Skill/Ability Success or Failure
The DikuMUD will tell you whether you have been successful in a skilled action attack by
printing a message to the screen (often in a humorous format!) that indicates the result.

Note that many actions are “limited,” meaning that they may only be performed once per

a certain set number of combat “rounds.”

Conclusion of Combat
Combat concludes with the demise (or flight) of one combatant. After combat, it is

standard practice to search the corpse of an opponent for valuable equipment, gold, and

weapons. The next session excerpt represents the end of a typical combat:

After combat, always remember to get coins and items from the corpse of your

opponent.

>

The beastly fido misses you with his hit.

You barely pierce the beastly fido.
The beastly fido is stunned, but will probably regain consciousness again.

The beastly fido is mortally wounded, and will die soon, if not aided.

>

You barely pierce the beastly fido.

The beastly fido is dead! R.I.P.
You receive 36 experience points.
Your blood freezes as you hear the beastly fido's death cry.

> get all corpse
The corpse of the beastly fido seems to be empty.

148

py
N@TE

Part Il ¢ MUD Player’s Guide

DODD DOGHHOHHH HHH VOHSHHHIHOVVOO

When typing commands that refer to multiple objects, you may leave out the words in

and from. For example, you may type get all corpse rather than get all from corpse,

although both commands will produce the same result. Similarly, put bread bag

accomplishes the same thing as put bread in bag.

Fleeing Combat
Sometimes you will become involved in a combat that proves too difficult for your

character. In order to avoid death, you can flee from battle and fight another day, as in

the following session:

= 2S
Eastern end of Alley

You are standing at the eastern end of the alley, the city wall is just east,

blocking any further movement. There is a colorful graffiti sprayed on the

wall. A small warehouse is directly south of here and a mexican food

stand has been set up north of here.

A mercenary is waiting for a job here.

> con mercenary
Do you feel lucky, punk?

> kill mercenary

You miss the mercenary with your pierce.

> kick

The mercenary pierces you.
That Really did HURT!

You miss the mercenary with your pierce.

> You miss your kick at the mercenary's groin, much to his relief...

The mercenary pierces you.
That Really did HURT!

You miss the mercenary with your pierce.

=

The mercenary misses you with his pierce.

You miss the mercenary with your pierce.

> flee

Uncle Juan's Eatery

This place makes your nose run just from the smell of the spicy food they
sell. Spicy as it may be it still looks very tasty. A box of taco shells is set
on the counter.

There is a large, friendly sign hanging on the wall here.

Uncle Juan is here ready to take your order.
You flee head over heels.

Chapter9 ¢ DikuMUDs 149
}PODOOPHHHOGHGGHOHOSHHOGHHGHHOOVIHHHHHHOOOHOOOSE

The wimpy Command
It is a good idea to be prepared for the worst in combat. If a foe is too tough, you may not

have time to manually flee, so Diku systems allow you to preset a point at which your

character will run away with the wimpy command. Death is always a risk, however, and

nearly every player will meet his or her demise at least once in the course of play:

wimpy tells the DikuMUD that you want your character to “run away” if you fall below a

certain amount of hit points. wimpy <number> sets this amount, and wimpy @ forces you to

stay in battle to the bitter end—you will never run away (be cautious with this setting!).

A PANIC message means that you failed to escape from your foe, and must continue

combat.

>t

Ye Olde Water Shoppe
A mercenary is waiting for a job here.

> kill mercenary
You miss the mercenary with your hit.

Poe

The mercenary pierces you.
That Really did HURT!
You miss the mercenary with your pierce.

>

The mercenary misses you with his pierce.
You miss the mercenary with your pierce.

> wimpy 5
The mercenary barely pierces you.
You miss the mercenary with your pierce.

>
OK, you'll wimp out if you drop below 5 hit points.

>

The mercenary misses you with his pierce.

You miss the mercenary with your pierce.

>

The mercenary barely pierces you.
You wimp out, and attempt to flee!

PANIC! You could not escape!

150 Part Il ¢ MUD Player’s Guide
9HOHQHOODHHHGOHHGHDOOGHHHGHOHHGVDOSOOHOSSHVVQQOSE

Death
Dying in most DikuMUDs is not the end of the world, or the game. Consequences of death

vary from MUD to MUD, but commonly you lose experience and often your equipment.

Most MUDs, however, enable you to retrieve your corpse and your equipment—if you can

get toit! Other players may be able to help you find your “remains” in these circumstances.

2

The mercenary pierces you.

You're stunned, but will probably regain consciousness again.

All you can do right now is think about the stars!

>

The mercenary pierces you hard.

You are mortally wounded, and will die soon, if not aided.

> sc
You are a 17 year old male Human and about 1.6 m tall.

* It's your birthday today *

You have -9(24) hit, 100(10@) mana and 79(83) movement points.

You are almost naked, and your alignment is ‘Neutral. '
You have scored 34 exp, and have @ gold coins.

You need 1966 exp to reach your next level.

You have been playing for @ days and @ hours.

This ranks you as Bub the Swordpupil (Level 1).
You are mortally wounded! You should seek help!
>

The sun slowly disappears into the western horizon.

You can only lie still as the last heartbeat ebbs...
You are dead! Sorry...

You receive 5 experience points.

<** JPRESSeRETURNG = %

Mortal Wounds

If you are mortally wounded in combat, the skill bandage could save the day! However,

bandage cannot be performed on oneself—another player has to help you. This is one of

the aspects of DikuMUDs that ties players together, as different people often will help out
one another when trouble strikes. If you are near death, start shouting and chatting that
you need assistance, often others will respond. (The commands shout and chat are
covered later in the section titled “Communications.”)

Chapter9 ¢ DikuMUDs 151 |
P@® DOO BOHGGSHGOVOHHOHHO HOO HHHHHHHOOOOOOOE

DikuMUD Environment and Commands
As you have seen in sample DikuMUD sessions, the game is played through the use of

simple one-word commands and short sentences. Navigation, object manipulation, and

social interaction are all part of the gaming experience, and the Diku environment enables

users to accomplish these and other tasks easily and quickly. This section outlines the

most common commands and their applications encountered on “standard” DikuMUDs.

Note that many DikuMUDsare heavily customized, and for this reason you should always

consult a system’s online help for site-specific information.

Navigating the DikuMUD World
Movement in the DikuMUD environment is accomplished simply by typing a compass

direction, which may be abbreviated to a single letter. For example, walking to the room

to your north may be accomplished by typing n. (Note that typing north will accomplish

the same thing). Up and down can similarly be abbreviated to u and da.

Some DikuMUDs require you to move in diagonal directions, such as northwest or

southeast. These may generally be abbreviated as nw, se, and so on.

Speedwalking
Some Diku systems have built-in speedwalking functions. This enables you to type a

number of directional commands at once: nesd translated as north; east; south; down. Client

programs may offer similar functionality to users of systems that do not natively support

this function. Note, however, that using the speedwalking option may interfere with

diagonal movement: trying to walk northeast by typing ne would be interpreted as

north;east rather than the single direction northeast. Some client programs offer ways

around this problem (see the sidebar “DikuMUD Client Programs” later in this chapter)—

otherwise, you may need to turn off speedwalking to move in a diagonal direction. See the

help for speedwalking on your individual system for directions on “toggling” this feature

on and off, as it is system dependent.

help
The help command, issued alone, instructs the Diku system to display a comprehensive

command list. help <command or topic> (for most commands on most systems) displays

detailed help on specific commands and their functions. While this chapter can familiar-

ize players with general aspects of DikuMUD systems, the help system of the player’s
specific MUD provides specific details on the operation, syntax, and features of that

system, and should be referenced in the course of play.

152 Part Il ¢ MUD Player’s Guide

1DDOOHOOHHHHHHHOLOOHGHHHIOIWGHHOHGDIBVIVSH
S GOS GDVII

look <object>
The look command displays the room title, description, and contents. This includes the

presence of monsters, other characters, and items in the room. Note that some items or

monsters may be invisible—seeing these requires the capability to detect invisibility via

a potion, scroll, or spell. Also, if a room is dark, you will need to be holding a lit lightsource

(torch, lamp, and so on) to see these descriptions.

who
The who command displays a list of players currently connected to the DikuMUD. Most

systems display one page of names at a time, and prompt you to press the Enter key to

scroll to subsequent pages. Often, who displays the given names, classes, and levels of the

connected characters, although this is system-dependent (some systems display only the

names of characters with no other information).

The who command is enhanced on some systems, enabling you to retrieve detailed

information about a character. Some systems will allow you to type the following

commands:

who -n <name> Performs a who command on a specific name. This is useful
when trying to see the level of a specific player.

who <level> Displays a list of all players equal to or greater than the

specified level.

who -c <class> Enables you to list all characters of a certain class who are

currently connected.

Note that these variations of the wno command are highly system-dependent—see your

system’s help for detailed information.

examine <object> or exa <object>
Use the exa command to get detailed information about a specific object. Examine displays

any set description for a particular item, and may give you an indication of its magical

properties. Glowing or humming objects typically have some effect on the character;

however, effects may be either positive or negative, and generally only apply to objects

that are equipped.

You also may exa <monster or player> to see a list of which items a particular monster or

player is using. Again, you will only see items that are equipped by the individual, and are

viewable by you (non-invisible if you cannot see invisible objects, and so on). Certain

character classes have the additional capability to see items in another player or monster’s

inventory—items that are not equipped. Typically thieves and thief-derivative classes

have this capability (see the “Character Classes” section).

Chapter9 © DikuMUDs 153
> ®DOOGHGHOIIOHSHHHHOOVVOHSHHHHOOO SOOO

junk <object> or sac <object>
Use the junk or sac (sacrifice) command to destroy useless or unwanted objects. This
helps keep the MUD environment clean, and also may help improve overall system
performance by reducing the number of objects the MUD must keep track of. Be careful,
however, as objects disposed of in this manner are permanently discarded. Burnt light
sources, monsters, corpses, and similar items are good candidates for this type of disposal.

Ridding the system of these unnecessary objects will help to free up the computer’s
processor, so that the game runs faster.

wear <item>
To prepare the character for combat, you must equip—or wear—objects in your posses-

sion. Typing wear all will attempt to equip all items in your inventory—you will be

informed by the system what items have successfully been worn. Note that some

DikuMUDs restrict certain equipment to specific character classes, or to certain experience

level players. In this case, certain objects will not be wearable (sometimes you cannot pick

up items that are too high of a level!). Worn items no longer appear in the inventory, but

can be displayed by typing eq. You must be able to see the item to wear it (that is, if an item

is invisible, you must have the ability to see invisible objects to wear it—even if you know
it is in your inventory).

wield <weapon>
The wear command does not encompass weapons—these must be equipped separately

with the wield command, which essentially has your character hold a particular weapon

in hand, ready for combat. Like the wear command, you must be able to see a weapon to

wield it.

grab <item, lightsource, or weapon> or hold <item,
lightsource, or weapon>

The grab or hold command (depending on the system configuration) has its primary use

in equipping a source of light, such as a torch. The command grab torch takes a torch from

your inventory (assuming you have one), lights it, and moves it to your worn equipment

inventory. Certain other objects may be heldin hand as well, and are equipped in the same

manner.

Depending on the configuration of the specific Diku system, you may be able to grab a

@3°% second weapon, or special items to gain certain effects or bonuses to your character

NOTE attributes or statistics (see the “Equipment” section later in this chapter).

in She

154 Part ll * MUD Player’s Guide
DOD ®GOOGOHHOHGHHDOHOHOSOHGHGHHHHHVDVOSOSHHHH HD BOIS GHOSGE

put <object> <container>
You use the put command to move objects into containers. For example, the command

put taco bag takes a taco that is in your inventory and puts it into a bag (also in your

inventory). Full, grammatically correct syntax is unnecessary—the DikuMUD assumes

grammatical articles and the directional word “in”—although the sentence put taco in bag

will achieve the same result.

remove <object>
Items are readied with the wear command, but may be taken off or unwielded with remove.

This action is necessary to swap equipment (to exchange your small helm for the silvery

helm, for example, you first have to remove the small helm before you can wear the silvery

helm). Weapons are removed in this same fashion.

eat <food item>
You can eat edible items that are in your inventory by using the eat command. You will

be notified by the MUD when you are fully satisfied and no longer hungry.

Food Management
It is convenient to automate the eating process by constructing an alias that both gets

a piece of food from a container, then eats it automatically. This way, you only need to

issue a single command to feed your character, and your inventory is not cluttered (and

encumbered) with loose items of food. See the section on “Environment Customization

Commands” for more information.

drink <drink container>
Similar to eat, the drink command tells your character to take a sip from a liquid container.

Thus, to drink from your canteen, type drink canteen (not drink water!). Youalso may drink

from stationary objects that are sources of liquid: for example, you may drink fountainin

the Midgaard Temple Square location.

fill <container> <liquid source>
Use the fill <container> <liquid source> command to refill a liquid container such as a

canteen, bottle, barrel, and so on. The most common usage is fill canteen fountainin the

Midgaard Temple Square.

Chapter9 © DikuMUDs 155
2DOGOGHHOVIYHGOHHGH LOD YHHHHHOOOOHOHOOOOOOO BOO & i BS B Bs Cs A AB Hy Km #

Qe GY GO Ge GPRS Ge DY) SO fl

quaff <potion>
The quaff command is similar to drink, but rather instructs your character to imbibe a

magical potion or flask. Whatever spells that are contained in the potion immediately will

affect the character after quaffing. Note that there are an abundance of poisoned potions

in the DikuMUD world—quaff carefully!

read <readable object>
Certain objects may have writing on them, which can be viewed using the read command.

This is most commonly used to read “MUDMail,” obtained in the Post Office. Remember

to junk or sac your private mail after you read it—do not leave it lying around for others
to see!

recite <scroll> <target> or rec <scroll> <target>
The recite command is akin to quaf f—it enables you to invoke the magic effects of a scroll.

The effects, similarly, are immediate.

Scrolls of Recall

Scrolls of recall, available almost universally in the Midgaard Magic Shop, are the

lifesavers of DikuMUD players. While fleeing from combat typically costs you in

experience points, a scroll of recall will safely teleport you to a temple (usually the Temple

of Midgaard, but this is not universal). Set the following alias for a quick escape:

alias rr rec recall <character name>

and always keep a recall in your inventory. This way, if you get into trouble, type rr and

you will be transported to safety in a flash!

use <object> <target>
Some items can be used, to some effect on the character or an enemy monster, in the

course of adventuring or combat. Such items typically must first be grabbed by the

character, and then used. An example of this type of item is a wand of lightning bolts: use

wand <monster> causes a lightning bolt spell to be cast on the monster. Note that many such

items have a limited number of uses, after which they are rendered useless.

Social Commands
DikuMUD systems were created with the idea of player interaction in mind. To develop

a sense of camaraderie and personal interaction, social commands are extensively

156 Part Il # MUD Player’s Guide

31DOHBWVOOHHHSHGG 9HVOHHSHGHG9OOOVSHPGBD V@OV9SGSSSS OG"

supported. The “socials,” as they are commonly known, enable characters to easily

describe waving, shaking hands, and other personal interactions to add realism to these

encounters.

<social command> <optional target>
Social commands are largely dependent on individual MUD support—there is no

universal list of social or “emotion” commands (see more information on these com-

mands and a list of available commands in Chapter 5). These commands are designed to

add a bit of “personality” to MUD characters, enabling the player to yawn, tap a foot in

impatience, spit, and engage in other (sometimes rude or obnoxious) behavior. Many

common commands do not require a target: yawn causes a description of your character

yawning to be displayed, while some require a target—as in poke <target>, which displays

that you have “poked” the victim with your finger. See the online help system of your

individual DikuMUD for detailed information.

Fatigue-Related Commands
To simulate the limits of characters’ endurance, movement points are deducted when a

character moves around in the MUD world. When these points reach zero, the character

cannot move, and should sleep or rest to quickly regain movement. Additionally,

characters that either are asleep or resting heal their wounds more rapidly. To resume

action, a resting character must stand, while a sleeping character must first wake, and then

stand up.

sleep
The regeneration of characters is much greater when sleeping—movement, mana, and hit

points are regained at several times the “waking” rate. To put your character to sleep,

simply type sleep. Sleeping characters cannot observe the events or hear the conversations

around them, although many systems allow the sleeping character to use the chat or

gossip commands. Additionally, many Dikus prevent sleeping players from receiving te11

messages—the sending player is informed that the target player can't hear you right now

when this is attempted.

wake
Issuing the wake command causes a sleeping character to become conscious, and to assume

the resting status (equivalent to typing the rest command). Before engaging in physical

activity, however, the character first must stand to get back on his or her feet.

Chapter9 © DikuMUDs 157
®@QODVDDSHOSSHHOSGIHHHOHHGHOHODIHOHGHHHSOVHHOHGHHHOOOHSOOOO

rest

The rest command makes the character sit down and relax, allowing a slightly greater

regeneration of movement, mana, and hitpoints than in normal waking mode. Although

the regenerative bonus for resting is not as great as for sleeping, the resting character may

observe activity in the room and take part in conversations—as well as receive incoming

tell messages. However, the character is still restricted from physical activities, such as

reciting scrolls, examining objects, casting spells, and so on.

stand
When a character is resting, issuing the command stand will make the character ready for

physical activity by standing up. At this point, the character’s rate of regeneration goes

back to normal—all bonuses for resting are lost. However, the character is now able to

perform all physical actions, including walking, casting spells, fighting, and so forth.

Creating aliases for resting will make the “sleeping” process easily controlled by only a

few keystrokes. Some players alias the sleep command as the hyphen key (-), and alias

the commands wake and stand as the equals key (=), shortening the process to two

keystrokes.

Character Informational Commands
It is necessary to monitor the condition and capabilities of your character as you

adventure in the Diku world. Informational commands will provide an overview of the

physical status of your character, their skills and proficiencies, learned spells, and carried

and worn equipment. All these displays contain vital data, and should be frequently

referred to during game play.

Score OF SC

The score command roughly displays information in the following format:

You are a 17 year old male Human and about 1.6 m tall.

* It's your birthday today *
You have 30(3@) hit, 100(100) mana and 80(83) movement points.

You are lightly armored, and your alignment is 'Neutral.'

You have scored 2132 exp, and have 123@ gold coins.
You still have 2 practice sessions left.
You need 2999 exp to reach your next level.
You have been playing for ® days and 3 hours.
This ranks you as Bub the Trainee (Level 2).
You are standing.

158 Part Il ¢ MUD Player’s Guide
G99GHOOHHHOO998 999908 9449S 9999S O99S9S9 9989909098

This display gives your age in days and hours of actual connect time, your health status,

and other pertinent information. Many DikuMUDs also display a list of statistics on this

screen, detailing physical and mental prowess of your character (see “Physical Statistics”

in the “Character Attributes” section).

inventory or i
The inventory command displays a list of all items currently in-hand (worn items are not

displayed in the inventory). Note that only objects that are visible to you are displayed—

without the capability to see invisibility, you cannot see, manipulate, or use invisible items

that are in your inventory.

equipment or eq
The companion to inventory, the eq command summons a listing of all worn equipment,

including held objects and wielded weapons. Note that, like the inventory command, you

can only see and remove items that are visible to you—if your capability to detect invisible

objects “runs out” while you have an invisible object equipped, you will see the word

something appear in your eq list (weapons, however, do not appear on the list).

skills or sk
The skills command displays the special skills and capabilities possessed by your

character, including information on how accomplished you are in a particular area. You

cannot use skills that are not learned—you first must practice with your guildmaster (see

the section “Practicing and Practice Sessions”). Excellent rating indicates mastery of a skill,

while other designations (fair, good, poor) denote intermediate levels of proficiency. Note

that these values may be substituted for other classifications on certain Diku systems—

some utilize a percentage-based system as well, where your skill level is represented by

your percentage of mastery (with 100% indicating complete knowledge and proficiency in

a skill).

Skills enable characters to perform special actions that are not common to all player

classes. Warriors receive enhanced attack skills that may be used in combat, thieves

commonly can learn the skills steal and picklock, and spellcasters generally receive few

skills (their spells offset this deficit). Unfortunately, skills are quite varied across DikuMUD

platforms, so it is impossible to offer a comprehensive list of skills and their functions.

However, the command help <skill> on most systems gives you a detailed description of

the functioning of that skill and its proper usage.

spells or spe
Similar to the skills command, issuing the spells command displays a list of your known
spells and corresponding proficiencies. Likewise, you must practice spells before you will
have success in casting them.

Chapter9 © DikuMUDs 159
)® PQ®ODOGHGGHVQHHSHOHHOGHHHOOHSOHGHHHOOO HOG

Environment Customization Commands
The “user environment” of a DikuMUD refers to the way in which text is displayed on a

user’s screen, how commands are interpreted, and the appearance of text. To accommo-

date the varying preferences of users, many of these aspects of the game can be modified

to conform to a player’s individual tastes. Text often can be colored for easy interpretation,

the formatting of text and status displays can be modified, and complex commands can

be shortened to simple keystrokes. This section describes the commands which control
this flexible environment.

toggle <setting> or tog <setting>
The toggle command (which may on some MUDs be abbreviated to simply to) is your “on-

off” switch in the DikuMUD world. You may toggle communications channels (for

example, toggle chat silences the chat channel), your capability to be summoned (teleported

by another player with the summon spell) with toggle summon, and other settings or controls

supported by your individual Diku system.

You may want to toggle a few settings right as you start playing to streamline your

dit interface and prepare you for adventuring. The following settings are recommended:

toggle summon This enables you to be summoned by other players, which

may be necessary if you get in “over your head” in combat—

this can be life saving!

toggle grat Toggling the grat channel to off removes clutter from your

screen, without losing valuable interactions with other players.

@ ® @ @

display <option> or dis <option>
The display command enables you to configure your prompt—the command line that the

system sends you when ready for input. The prompt usually can be set to show your

current hit points, mana points, and movement. While different settings are supported

on various systems, the display all command usually sets your prompt to reflect these

character statistics, giving a prompt in the form:

< 10 Hp 10 Mn 10 Mv >

Because various DikuMUDs offer other options, see your system’s help on display.

alias <desired alias> <command to be aliased>
alias is one of the most useful general utility commands available to DikuMUD players,

speeding player interactions with the game and drastically reducing the number of

keystrokes required to accomplish a particular action. The alias function works in the

160 Part Il © MUD Player’s Guide

B® WVOOSHHHGHHHOHVOGHHHHHH GY DOSOHHPSDDVWOOOHGSSGOIIVOO

following manner: a short “word” or set of characters are defined to represent a longer

string of text. Furthermore, it is possible on most DikuMUDs to alias multiple commands,

automating a set of related actions.

For example, you may commonly find yourself retrieving a canteen from a bag, drinking

from the canteen, and then returning the canteen to the container. This process may be

automated in the following manner:

alias h2o get canteen bag&drink canteen&put canteen bag

This string of commands (here separated by the & symbo]—certain DikuMUDs may use

other symbols to distinguish separate commands, so check the help files on your system)

are performed every time the player types the much shorter command h20. Automation

of this sort allows for easier game play and quick response—use the alias function to your

advantage! Magic-using characters especially need the functions of alias, as complex

combat spells can be reduced to a few keystrokes: you can substitute a simple word such

as zap for the unwieldy command cast ' lightning bolt ', allowing for rapid-fire spellcasting

offenses.

DikuMUD Client Programs
You may hear other players talk about using client programs to automate their MUDding

sessions, especially the specific program Tintin++, which has been written specifically for

the DikuMUD environment. Clients are terminal programs (similar to the familiar telnet),

which offer enhanced features specifically geared for the MUD environment. alias

commands are commonly supported (and enhanced) by these programs, as well as the

capability to log onto several MUDs simultaneously, to completely automate actions (set

certain commands to be triggered in response to text sent by the MUD), and other

helpful features. For detailed information on client programs, including where to get

them, how to run them, and how to make the most of their features, refer to Chapter 10,

which covers “Mud Clients.”

Character Attributes
Most DikuMUDs allow users to choose their race, be it human, elf, dwarf, or some other

creature. Often the choice of race will impact the physical statistics of a character, which

represent the physical and mental capacities of that individual. This section describes the

most common races and types of physical attributes encountered on Diku systems.

Race
DikuMUDs offer players the option of choosing their character’s race during the character

creation process. Certain races (other than human, which is the standard), may impart

certain bonuses—and penalties—to the physical statistics of the character. Following are
the most common races:

Chapter9 © DikuMUDs 161

Human: Human characters are the “standard” race against which other races
are compared. Humans have a balanced set of physical statistics, without bo-
nuses to any one stat—but also without penalties. The human race is a good
choice for almost any character class.

Elf: Elf characters typically are described as being “innately magical” beings,

meaning that they have a natural magical aptitude (such as high intelligence).
The downside of the elf race is their frailty—typically elves have less constitution
than human characters. Spell-casting characters often benefit from being elves,

reaping the benefits of an increased intelligence, and, accordingly, spell power.

Dwarf: Dwarves usually are hardy folk, possessing enhanced strength and

constitution. Dwarves often suffer in the area of intelligence and dexterity,

however, and usually do not make effective mages. Players wishing to be fighters

may consider the dwarf race a good choice for their chosen profession.

Many times, other races are made available, as well. There are no set guidelines, however,

for their creation—players will have to read the MUD’s specific “help” information

regarding particular races. Keep in mind that races that have enhancements in certain

areas often suffer in others; therefore, you must weigh the benefits of a certain race against

their liabilities. The correct combination of race and class, however, can make for a very

“optimized” character that is extremely effective in his or her capabilities.

Physical Statistics
The physical prowess and mental capabilities of your character are represented by ability

scores, which typically range from 1 (abysmal) to 18 (superior). Most DikuMUDs display

these “stats” in the score display, although a few use a separate listing that you can access

using the stat command. The ability traits are as follows:

Strength: Strength represents the sheer physical brawn of your character. This

stat influences the amount of damage you can do in physical combat, the

amount of weight you can carry, and the size of weapon you can wield. Strength

is the prime attribute for fighter-class characters.

Intelligence: Intelligence is a measure of the mental acuity of your character,

which has a dramatic impact on spellcasting capabilities (the number of spell

points a character has depends on the intelligence of the individual). A high

score in this area results in a character learning new skills and spells more

easily—the higher the score, the fewer practice sessions will be required to

achieve mastery of a particular skill. Intelligence is a prime requisite for magic-
user class characters.

Wisdom: Wisdom is a measure of the sagacity and intuitive powers of the

character, which impacts clerics most heavily. A high wisdom is beneficial to all

classes in terms of the number of training sessions gained per level—low wisdom

players may receive a mere one session per level, whereas the character with an

18 wisdom might receive 5. This stat also influences the success with which

cleric-class players cast spells.

}OQOBSBGGHGSSSSGSSGHHGHGHS HOO O9OSH9HOOOO SOOO)

162 Part Il ¢ MUD Player’s Guide

DHODOVOOEHHHHHID OOOH HGHGHGD DOG OG OHGS9DGBOVOSIGSG"

Dexterity: Dexterity is the measure of nimbleness and agility possessed by a

character. Highly dexterous individuals will be harder to hit in combat, and

likewise, will have an easier time hitting their opponents. The capability also is

of key importance in certain skilled actions, such as picking locks and stealing

items—thus making dexterity the prime stat for thief-class characters.

Constitution: This stat is a representation of the fortitude of a character—the

capability to resist fatigue and absorb damage inflicted in attacks. High constitu-

tion results in a much greater number of hit points (the measure of physical

endurance and wellness), thus making the character better able to endure

punishing attacks. Physical combat-oriented classes, such as fighters, especially

prize a high constitution—although all characters benefit from increased consti-

tution through an expanded number of movement points (the numerical

representation of fatigue).

Charisma: Charisma is the measure of physical attractiveness and personality.

While often berated as a “useless” statistic, it does impact the amount of money

characters get for selling items in shops (for buying, as well, on some systems),

and (more importantly) often impacts the percentage share of experience

obtained when adventuring in groups (see “Grouping and Collaborative

Combat”).

Practicing and Practice Sessions
A character gains practice sessions when he or she advances a level. The number of sessions

gained is in relation to the wisdom of the character—higher wisdom equals more sessions.

The player subsequently may use these sessions to train skills and spells when in the

presence of a guildmaster, by typing

practice <skill or spell name>

Or

pra <skill or spell name>

While some DikuMUDs enable players to train all their skills with the same guildmaster,

other Diku systems have established systems in which only certain individual guildmasters

teach some skills—it then is left up to the player to seek the appropriate master from which

to learn a new skill or spell.

Another consideration when training skills/spells is the intelligence of the character. The

higher the intelligence stat, the fewer training sessions it will take the character to reach

mastery of an individual skill. It generally is advisable for players to use all of the

equipment that gives pluses to Int and wis that they can find when leveling—this
increases the benefits derived from attaining the higher level.

Chapter9 © DikuMUDs 163
DOOD OOVLlWVSHHGHGHO OOH VHSHOHH HOV GGHOHHOHOOOOHOOOO

Hit Points
A character’s hit points are numerical representations of the level of that individual’s
health. A beginning character may start with as few as about 10, whereas some DikuMUDs
have level systems which allow players to eventually possess over 1,000 hit points. The
greater the maximum capacity in this trait, the more damage the character can withstand
(when healthy). If hit points ever reach O, the character will fall unconscious and continue
to lose points if he or she is not bandage by a player with that skill, or magically healed. At
-10 hit points, the character dies.

The constitution stat determines the amount of hit points gained by a character when levels
are advanced, and certain pieces of equipment (and even some weapons) may raise the
maximum hit point capacity of a plaver when equipped, wielded, or held (this is referred
to as +HIT capacity—do not confuse with HITROLL, which measures the likelihood of a
character to hit with their attack).

The passage of time gradually restores hit points to an injured character, a process which

is greatly enhanced when the character is sleeping or resting. Note that hit points are not

regenerated continuously in this manner, but only every clock tick, or cycle, in the

DikuMUD system. Magic spells can restore hit points instantly (this is the cleric’s

specialty), a great help in extended combats (spellcasters can heal themselves in the course

of combat, as well as heal others). The age of the character impacts this regenerative

process—the older the character, the slower hit points are regenerated.

Mana Points
While hit points represent the physical, mana points represent the magical powers and

endurance of a character. Mana points are required to cast spells, with higher-level spells

demanding greater amounts of mana to cast. Once mana is depleted, the character may

not cast spells until sufficient levels of mana have regenerated. Mana points are the same
as spell points on an LPMUD.

Movement Points
Movement points are a measure of your character’s fatigue. They are depleted as your

character moves around the MUD or takes other actions. Certain types of “terrain” may

require more movement points than others—a paved road might drain one movement

point per “room” moved, whereas a swamp area might cost three or more per move.

Movement points are naturally replenished over time, but can be regenerated much more

quickly through sleep or rest.

On certain Diku systems, movement points are utilized by the character during combat.

Simply swinging a weapon (especially if it has a high weight) will “cost” movement, as will

certain skills. If you play this type of DikuMUD, it is especially important to keep track of

164 Part | @ MUD Player’s Guide

HOHDDVOOSHHGHHD SOONG HHHSS FG VOVVVSGSIVSDOE

movement points before combat, as you will be unable to fight back against the monster

if you run out and become exhausted. While your character will still recover a number of

movement points at the next clock tick, or cycle, you regain very few movement points

while you are in combat. Smart adventurers will be prepared for this circumstance with

a scroll of recall—reciting the scroll when your movement points have dropped danger-

ously low will extricate your character from the combat (you do not require movement

points to recite a scroll).

Sleeping, Healing, and Regenerating

Having your character sleep or rest will increase the number of points regenerated in all

“wellness” measures—hit points, mana, and movement. Note that the age of a character

influences the rate at which certain points regenerate. Older characters will receive more

mana every tick (MUD clock cycle) than younger adventurers. Conversely, young

characters regenerate hit points slightly faster than old. Keep in mind that certain

equipment may actually raise or lower the character’s age, which will affect this

regenerative process.

Weapons Modifiers
Many of the weapons, pieces of armor, and items that you will come across in the course

of playing a DikuMUD will be “magical,” or enchanted, so that they increase your ability

to hit and damage an opponent. These special enhancements are reflected in a character’s

hitroll and damroll, which measure the relative capability to hit and deal damage to a foe,

respectively. Note that certain items actually can reduce your hitroll or damroll—these

should usually be avoided.

Hitroll
The hitroll attribute (displayed only on some Diku systems) represents the collective

bonuses of all pieces of equipment and weapons used by the character that impact the

capability to hit an opponent. A high hitroll enables a character to connect with a greater

percentage of blows, ultimately resulting in greater damage per round to the opponent.

Damroll
A character’s damroll (again displayed only on some DikuMUDs) is the representation of

collective bonuses to the damage done by a character’s attack. A high damroll indicates

that the character will do a large amount of supplemental damage in addition to the

standard damage from a weapon attack—the damroll value is added to your total weapon

Chapter9 © DikuMUDs 165
OGOODDOOOSHHOOOVISHHHHHHOSODHHHHHHOOVHHHOHHHOOHHOHHOE

damage for each hit. A high damroll can greatly improve the effectiveness of a character’s
attack—a high level character may be able to do more than 80 hit points of damage with
a single stroke.

e ®

Modifying Stats
There are several ways in which stats may be modified in the course of playing a particular
character on a DikuMUD. These are outlined in the following sections.

Equipment Bonuses
Certain equipment yields bonuses to certain character stats or attributes when equipped
or wielded. Often, these pieces of equipment are described as glowing or humming,
although certain objects which are not visibly magical in nature may confer bonuses as
well. Scrolls of Identify will reveal the nature of equipment bonuses for a particular item—
the command rec identify <item> uses an Identify scroll from your inventory (which then
disappears) to show the special qualities of the target item.

Leveling Bonuses
A more permanent way of gaining bonuses to your physical stats is to gain levels. Levels

are advanced automatically when enough experience has been accumulated, not requir-

ing interaction or special action by the player. When a character reaches the next-highest

level, there is a chance that each physical stat will increase by one. This chance (usually

quite small) is enhanced by the presence of bonus-giving items being worn by the

character when leveling. For example, a character who is wearing two rings that give +2

intelligence each will have a significantly greater chance to raise his or her permanent

intelligence rating when a level is achieved, provided that the rings are worn at the time

when the level is gained. Note that items in your inventory or containers do not count—

only worn items impact the stat-raising process in this manner.

For this reason, players often trade among themselves or keep in reserve special leveling

equipment, which provides poor armor value, but increases physical stats. Such items

may be highly prized for this characteristic (while those that confer good armor bonuses
as well are especially in demand).

Character Classes
A character’s class represents their profession, and determines what capabilities or spells

are available to the player. Naturally, the types of skills and spells that are available depend

on the nature of the class. Fighters receive many combat-related skills, while magic users

can train in numerous spells. The following section describes the capabilities, strengths,

and weaknesses of the most common character classes found on DikuMUD systems.

166 Part Il ¢ MUD Player’s Guide

GDDHOOOHHHHHDH VOGHHHGHHHD BOG VG 9PIVBVIVBVOBOeS

Fighter Classes
The prime physical statistics for fighters are strength and constitution, allowing them to

overpower their enemies in pitched battle. Additionally, fighters typically have the

capability to perform several attacks per round of combat, can use almost all equipment,

and can take as much damage as an elephant (or dragon?).

The disadvantages of being a one-man army? No spells, few special (non-combat)

capabilities, and low int and wis mean fewer training sessions for the fighter character.

Fighter-type classes are the “grunts” of the DikuMUD world—they do not (usually or to

any great extent) possess spells or non-fighting special capabilities, but they compensate

for this with raw muscle. Fighters generally have the most numerous and most damaging

physical attacks of any character class, coupled with a large number of hit points and big

movement capacities. These qualities make fighters, in effect, tanks. They deal great

amounts of damage, and can withstand punishment that would make other classes run

for the safety of a temple.

Low intelligence and wisdom, two common characteristics of fighters, also result in fewer

training sessions per level. Thus, it may take longer to learn and master skills (although

fighters do not have to worry about training spells). Offsetting this disadvantage,

however, is the fact that fighters generally can wear and wield just about any item in the

game (save a few), making fighters (as a class) easy characters for a player to equip. Most

importantly, fighters are very well prepared to deal out, and to take, damage.

Occasionally, certain MUDs will offer alternate fighter-type classes, such as paladins.

Paladins are a subset of fighters who follow a religious life (although they may worship

good or evil gods)—evil paladins generally are referred to as “anti-paladins” and,

subsequently, have access to a limited number of cleric spells. The tradeoff, however,

usually is more restrictions on “wearable” equipment, and slightly diminished fighting

effectiveness. Another alternate fighter-class is the ranger, which receives the benefit of

enhanced tracking skills, some thieving capabilities, and occasionally, a limited number

of spells. Like paladins, rangers typically are not as effective in combat as fighters.

If you are of the “hack-and-slash” mentality, the fighter class may be for you. With a thick

metal plate, a trusty sword, and a lot of brawn, the fighter is ready for the creatures of the

Diku world.

Magic-User Classes
The prime statistic of magic-users is intelligence, allowing them to cast their spells

effectively. Dexterity also can be valuable, as it prevents the generally physically weak

spellcaster from taking as many direct hits in hand-to-hand combat.

The greatest advantages enjoyed by magic-users are their powerful spell attacks, a rapid

mastery of skills and spells with high intelligence, and their capability to use some

defensive spells for physical protection.

Chapter9 ¢ DikuMUDs 167
2° PSQOSOGGSSLSVWHOHGHHHYOHWOSHOGHHOHVHHOHOGHOLSOOOO

Disadvantages of the class include physical weakness, feeble physical attacks, few hit
points, and, commonly, restrictions that prevent their use of all but light armor and
dagger or staff-type weapons. These liabilities offset magic-users’ capabilities to inflict
massive amounts of damage through spell attacks (especially at the highest levels).

The magic-user classed character is typically one of the most powerful at higher levels,
with fierce magical attacks that can slay beasts that make fighters tremble. However, the
difficulty comes in getting to high level with a magic-user—starting with few hit points
(sometimes five or less!) and weak attacks, the magic-user is less effective at lower levels
before offensive spell capabilities are trained.

Equipment restrictions often help physically cripple the magic-user, as certain pieces of
armor usually are unwearable by this class. The most restrictive systems disallow armor
of almost all types for the mage, with only robes, rings, and other miscellaneous objects
allowed (although this is not the typical situation on DikuMUDs, as it is on many other

systems). Weapons may be restricted as well—some DikuMUDs only allow magic-users to
wield daggers and staves.

The payback for these limitations is the offensive spell power of the magic-user, as higher-

level spells may outright kill many monsters. Special capabilities also are conveyed

through spells, often allowing the player to fly, see invisible objects, teleport, locate
objects, identify equipment, and so on. Such benefits are difficult to come by for non-
casting classes.

Hybrid magic-user classes often include the likes of druids. The druid is a magic-using class

that typically is identified with nature, and frequently, they receive spells that call on

natural forces for their power (such as a spell that controls the weather and causes

lightning to strike). Often, druids are more effective fighters than magic-users and may use

more weapons and armor, in exchange for a lessening of spell power.

If you like to play it “smart,” by figuring out creative combinations of spells that will aid

you and weaken your enemies, and enjoy being a semi-mysterious and supernatural force

in the MUD world, the magic-user is the answer to your MUD-dreams.

Thief Classes
Prime physical statistics of the thief are dexterity and strength (to a lesser degree). High

dexterity is crucial in executing their special skills and capabilities.

The advantages enjoyed by the thief class include many special capabilities such as lock-

picking, the capability to backstab, and other system-dependent special capabilities.

Thieves generally can fight well, gain access to areas and treasure more easily and safely

than other classes, and may have the capability to “peek” into the inventories of other
players (and possibly even pick a few pockets!).

168 Part Il © MUD Player’s Guide

®B@OOOSHOHHGHHDHHOOOEHHHGHHHDVOEOHHHHID DVI POGHHGISISVOSIS IGE

Disadvantages associated with the thief include a lack of spells, a tendency to be less

effective at fighting than those of the fighter class, and less hit points than fighter-classed

characters. While skills such as backstab can aid in battle, many other talents only apply

outside of combat.

Thief-classed characters are not shunned by DikuMUD society as an outlaw or brigand,

but rather are known for the wide variety of skills and capabilities which aid their

explorations of the Diku world. While not as effective as fighters in terms of raw combat

force, thieves possess capabilities that aid them in combat. backstab, one of the most

useful, allows the thief to sneak up on enemies and stab them in the back as the first move

in combat—an action which, if successful, can do a large amount of damage in that single

hit. Thieves usually get extra defensive maneuvers in combat as well, with dodge and tumble

being the most commonly supported skills. These techniques, which are automatically

taken into consideration by the MUD in the midst of combat, may allow the thief to dodge

or roll out of the way of an oncoming blow, avoiding or lessening the resulting damage.

Outside of combat, the capability to pick locks often comes in handy, granting the thief

access to areas without having to first retrieve the proper key—usually from a guardian!

Thieves can, as their name implies, also attempt to steal objects from monsters, or even

other players (depending on the individuals).

Be sure to check DikuMUD’s rules before you steal from fellow players!

A common thief sub-class is the assassin. Part thief, part fighter, the assassin

character combines some thieving capabilities with enhanced backstabbing and combat

maneuvers. This results in a character who sometimes fights as effectively as a fighter,

albeit with less hit points. However, the addition of thief capabilities compensates for this

shortcoming.

If you enjoy the dark alleys of your MUD, gaining access to the secrets of the realms, and

the riches that are to be found, the thief class may offer you the richest set of skill options,

while still giving you the capability to hold your own when it comes down to a fight.

Cleric Classes
The cleric’s prime statistic is wisdom, which enables them to effectively cast clerical spells.

Many clerics also possess high intelligence, rounding out their capability to learn spells

quickly.

The chief advantages enjoyed by clerics include the capability to cast healing spells,

knowledge of strong defensive spells, and the capability to wear more armor and wield

more weapons than magic-users. This combination allows the cleric to withstand large

amounts of damage, which would kill their weaker magic-user counterparts.

Chapter9 ¢ DikuMUDs 169
)@@BDOG®GSOQOlVSHHOHHGHOVHVOHHSHHOOOOHHOO

Disadvantages of the cleric class center around their weak offensive spells (usually much
less effective than those of magic-users) and their possession of few special capabilities
other than spells. Despite these drawbacks, clerics generally are sturdy adventurers well-
suited to the rigors of adventuring in a Diku world.

The cleric is a “soldier of God,” armed with healing and defensive spells and can use a wide
variety of armor and weaponry. The cleric is able to both weather a fight and administer
a harsh reprimand to the opponent. The capability to heal wounds stands out above all
other capabilities, and can save the life of the character (as well as fellow adventurers)
numerous times in the course of DikuMUD adventuring. Coupled with strong defensive
spells, the cleric is an extremely formidable opponent. The disadvantages faced by clerics,
however, are offensively weaker spells than those obtained by magic-users, and a lack of
skills other than spells.

Cleric sub-classes include the paladin (described earlier) and similar hybrid spellcasting
warriors. All these classes tend to suffer reduced combat capabilities in light of their
spellcasting potential.

Players wanting to play a well-rounded character class may find their ideal in the cleric.

Well defended and yet capable of making a showing in the offensive arena, capable of

healing wounds in the midst of battle, the cleric is a force to be reckoned with in the Diku
world.

Multiple Class Characters
Certain DikuMUDs enable players to select two or more classes for their characters, giving

the resulting multi-classed character the capabilities and/or spells of both classes. High-

level, multi-classed characters often are extraordinarily powerful—imagine the character

that can deal physical damage like a fighter, cast powerful offensive magic-user spells, and
heal in the middle of battle with cleric spells!

The obvious advantages enjoyed by this type of character are offset by the difficulty of

achieving levels, as each separate class must be trained to the succeeding level with

experience. Thus, a tri-classed character generally will require three times the amount of

experience to advance to a numerically higher level—each class must be trained at one

level, then again at the next level, and so on. For determined and committed DikuMUDders,

however, there is no equivalent to the power of high-level, multi-classed characters,

giving them great appeal despite the relative slowness of advancement.

@

Equipment
As noted earlier in the chapter, equipment must typically be worn or held to be used by a

character. Certain equipment, moreover, is worn on a particular part of the body: helmets

and hats on the head, gauntlets on the hands, suits of armor on the body, and so on. Only

170 Part Il ¢ MUD Player’s Guide

1DDHOHOOHHHG DG HSOHH HHP SD BOBS SOPSDSOOG"

one such piece of equipment can be worn on a single location. For example, you cannot

wear both a hat and a helmet simultaneously—you must choose one or the other, or swap

them as your needs require (if they possess different characteristics and bonuses).

There are exceptions to the one-item rule, however. Specifically, characters can typically

wear two of the following:

@ Rings

@ Amulets (neckwear)

@ Bracelets (wrist armor)

In addition, a character may grab one object to be used as light (a torch or staff that emits

light), and typically can grab either an additional weapon (to benefit from the hitroll and

damroll or other bonuses, or also to use the second weapon in combat with a dual weapons
skill) or a magical item of some sort. Wands, staves, and useable rods commonly are of this

sort—they must be held in hand before they can be used. The types of equipment are so

diverse across DikuMUD systems that individual items cannot be described here.

Another consideration regarding equipment is saving and renting. Depending on the

setup of your DikuMUD, you may be able to simply type save and quit to exit the game,

automatically having your items and inventory saved with your character. On this type

of MUD, you will begin the next game session exactly as you left, holding and wearing the

same equipment and possessing the same inventory.

Certain Diku systems, however, require that you rent your equipment before logging off.

In this case, you will have to find a receptionist that will store your equipment before you

actually leave the game—simply typing quit will cause you to drop everything that

youare holding, saving none of your items (including worn or wielded equipment). When

you find a receptionist (one is almost always present in Midgaard), you simply type offer

to get a “quote” on how much rent will be assessed per day (real time) that you rent. Note

that if you run out of money, your equipment will be sacrificed. If you are willing to pay

the quoted price, the rent command will store your equipment and log you out of the

game.

Communications
Communicating with other players is important in the DikuMUD world. Often you can

obtain equipment and supplies from fellow adventurers, or enlist the aid of a group of
individuals to form a “party.” These activities require player communication, and the

DikuMUD environment allows for many different forms of person to person and public
communication.

Messages may be of multiple lines—the text is not transmitted until you press the Enter
key (or carriage return on some systems).

Chapter9 ¢ DikuMUDs 171
1 DOSOGHGHHOOSVSHHHGGSOOHHYGHGHOHHHOVVHHOHSHOOOH OOOO’

say <message> sends the text message you type to every person in the room. You usually
can substitute the say command with the " character.

tell <target player> <message> sends a message to a specific player only—it cannot be
heard by other players. (The syntax for the tell command is tell <player> <text...>.)

reply <message> enables a player to easily send a message back to the last person who
did a tell to them. This especially is useful in the course of a “te11 discussion,” in which
players exchange multiple lines of text back and forth—the players can use the reply
command rather than retyping tell and the player’s name for each message.

whisper <target player> <message> enables you to send a private message to a specific
player who is in the same room with you. However, all other players in the room will see
a message to the extent that you whispered to <target player>. This is useful in DikuMUD
political intrigue situations!

tog <channel name> silences the text transmitted when others send messages on the

designated channel. It usually is possible to disable one or more (or all) communications
channels with the toggle command.

chat <message> enables you to send messages that are seen by all other players across
the MUD (except those who have toggled off the chat channel. The “chat line” is the

most commonly used open discussion line on most DikuMUDs.

gossip <message> is another MUD-wide discussion channel, similar to chat. Some Diku

systems offer only one or the other channel, and a few restrict their usage by making

gossiping and chatting cost movement points, or by level-restricting the commands

(brand-new players, for example, cannot use these channels on some systems before

they “learn the ropes” by gaining a level or two, to keep these “newbies” from being a
public annoyance).

grat <message> channel (the most commonly off-toggled channel on DikuMUDs) is used

exclusively for congratulating fellow players on their achievements. The channel was

written in to the DikuMUD environment to keep excessive numbers of this type of
message (commonly found on the public channels of other MUD systems) out of the way

of other discussions. It is considered to be a breach of MUD-etiquette to use the other
discussion channels for this type of message.

auction <message> channel is just that—for use by people wanting to buy, sell, trade, or

outright give away equipment. Rare and highly-valued items are commonly bid on in an

auction-like manner, with the highest bidder taking home the prize. There are no official

regulations for auctioning items, but common courtesy and honest bidding are the norm
and expectation.

shout <message> enables a player to display a message on the terminal of all characters

within acertain “geographic” proximity of the shouting character. This especially is useful

for certain collaborative efforts, in which a large group must communicate, but do not

desire to use the MUD-wide communications channels. Most DikuMUDs do not allow the

toggling of shouts—you cannot directly prevent shouts from being displayed.

group say <message> Or group tell <message> enables a band of players to communicate

amongst themselves, usually by typing group say or group tell (see “Grouping and

172 Part Il ¢ MUD Player’s Guide

DDDDHWOOGOHHHGSHHG OHVOHSOOFS BB VGVVNVVOBOVSOO9VSVE

Collaborative Combat”). The specific syntax is dependent on the individual MUD system.

emote <description of action> is a special kind of communication command that you

can abbreviate as a colon (:). It enables you to describe a character action in a third-

person manner. Rather than having a message appear as <character name> Says eo", the

emote enables you to describe an action taken by the character in the form <character

name> <description>. If a character named “Bob” types the command emote looks quite

bored..., the resulting display would look like Bob looks quite bored... As you can

imagine, this has nearly limitless possibilities if you are creative (have fun!). Note that

emotes can be made to look like output generated by the MUD, and with a little clever

emoting, you can trick people into thinking that an action or combat is taking place,

when you are actually issuing an emote. While you should use this technique cautiously

(if at all), the potential for humor (and mischief) is nearly unlimited.

Grouping and Collaborative Combat
Nearly all DikuMUDs allow characters to group with one another, each player assisting

each other and sharing in the experience received for slaying creatures, and so on. This

group sometimes is called a party, and the action of forming such a group can be called

grouping or partying. This is generally accomplished in the following manner:

1. The character leading the group must follow him or herself. This character will

do the walking for the party. Normally, the most experienced and knowledge-

able player will lead (usually, but not necessarily, also the highest level player).

2. Each player to join the group must follow <leader's name> to start moving in

conjunction with the lead character.

3. The leader must then group <name> for each character who wants to join the

group, starting with him or herself. You first must be a member of a group (your

own) to begin adding players to the group.

At this point, the group should be ready to adventure. Note that players may need to be

re-grouped if they die, or if they follow themselves for some reason. Note that DikuMUDs

require members of a group who are to share experience be in the same room when the

experience is earned—in other words, a low-level character cannot join a high-level group

and sit in the safety of the temple. Rather, the character must follow the others around,

facing the possibility of attack by aggressive monsters and damage from “area attack”

spells cast by monsters.

To communicate within the group, use the group tell command, which sends a message

to all members in your current group (regardless of their location—you need not be in the

same room to hear these communications). Issuing the group command by itself will

display a list of all group members, their levels and classes, and their current hit points,

spell points, and mana points. This can be especially useful to tell the clerical spellcasters
when they should heal certain group members.

Chapter9 © DikuMUDs 173
POO OPOSOGOHOESHYHGGHOSOOYIHOHOHHHOHONHOHHHOHOHOHOOOOOGO

Individual members may leave the group by typing follow <their name> to follow
themselves. The group leader can allow people to join or kick them out at will—group
<name> On a player who is currently grouped will kick them out of the group. Likewise, the
command ungroup <name> will kick out a character of the group and force him/her to stop
following the leader. The ungroup command issued alone will disband the entire group.

Remember that experience is split amongst members in accordance to their level.
The higher the level a character is, the closer he or she will get to receiving a “full” share
(the percentage the highest-level character receives). Shares are, in addition, influenced
by the charisma of the characters—if two characters were of the same level, the one with
higher charisma would still receive a greater share. Some DikuMUDs also offer the split
<amount> command, which splits the specified amount of coins amongst all members of
a party—allowing the party to equitably distribute gold to the party members, as well as
experience.

Finally, some DikuMUDs restrict the capability of characters to group. Some MUDs

require that characters be within five levels of one another to group—other systems will

impose their own rules. Consult your local help system for information.

Avoiding Grouping Restrictions

A number of Diku systems require that characters be within five levels to group. One way

around this problem is for a middle-level character to be the leader, thereby allowing

characters five levels higher and five levels lower to group. In this manner, a Level 1

character could group with a Level 10 player, provided that both the Level 1 and the Level

10 characters were grouped by a Level 5 individual.

Preparing the Character: Strategy
While most players eventually can be successful and achieve the highest levels on the

majority of Diku systems, certain approaches make the process easier. The beginning

player needs to play to survive and develop the necessary capabilities to meet with success

later in the game, while higher level characters need to take into consideration MUD

politics, in addition to seeking out the best equipment and items that can be found. This

section provides some recommendations for prioritizing objectives at these different

levels of play to help make your Diku experience less painful and more rewarding.

Playing for Survival: The Beginning Player
What are the most important goals for a low-level character? How do you survive in the

often hard world of DikuMUD as a “newbie,” or brand-new player? You must accomplish

several things to succeed, and live through your first few levels.

174 Part Il ¢ MUD Player’s Guide

OBVQQOOGHOHHHHHWQOHHHGHHDOWVOGIHHGHDIQVIVIPGHOIBB

Training
You first must train your character in a skill if you hope to be able to fight anything. While

some Diku systems do not require characters to train in basic fighting skills such as slash

and pierce, many of the newer systems do require these elementary skills be learned—it

is not assumed that all characters know how to handle a sword, an ax, or a dagger in

combat. If these skills are offered on your MUD, train a combat skill with all of your initial

training sessions.

Do not train multiple skills initially, unless you are able to become completely proficient

ina fighting skill and have extra sessions (not likely in the first level). You usually will want

to train slash, as this skill applies to edged weapons, such as swords—the most common

type. This will give you enough skill to hit the easiest monsters with some degree of

accuracy (just try to hit something without training a combat skill!).

Equipment
Your second objective is to obtain equipment. Do this in any manner possible—feel

absolutely free to beg higher level players for equipment and money (they expect this, and

often will give you generous handouts if you appeal to their egos!). Groveling and looking

pathetic may be enough to land you 50 thousand or more coins from a single player

(depending on the monetary system implemented on your system), which will buy plenty

of food and basic equipment. If nothing better presents itself, buy a long sword and all the

basic armor in the armor shop (if your system allows you to grab a second weapon, buy

two long swords).

Miscellaneous Supplies
Go to the General Store and buy a bag. Then (provided you have begged a few coins) buy

about 10 pieces of bread at the bakery, and fill your bag. Buy a few torches or a lantern,

too—you probably will be caught in the dark at some point. Also, do not forget to go to

the water shop and buy a canteen, as you will get thirsty quite quickly. If you have

managed to beg enough coins, go to the magic shop and buy a scroll of recall and maybe

a yellow potion of see invisible (the yellow potion is especially important if equipment is not

level-restricted on the MUD, as higher level players may give you invisible objects).

Find a Spellcaster
Once you are equipped, try to find a magic-user player and have him or her enchant your

weapons, if the system supports this spell. Enchanted weapons will give the new player

a significant advantage, and will greatly reduce the time it takes you to collect experience

in the first few levels. armor or bless spells also may be helpful, and fly can save you from

having to sleep every couple minutes to regain movement points (you won’t have many).

If you manage to find an especially amiable and helpful spellcaster, ask him or her to assist

you for a few minutes. Spells such as blind and wither strike (these are not common to

all DikuMUDs, however) can cripple monsters you normally could not kill on your own.

Chapter9 ¢ DikuMUDs 175
©QQSlDSOQGESOHQVVSIGHGHGOGOVHHGHHHHHHOVHHHHHHOOOHOHOO

Find Help
Finding higher-level characters who are willing to help you will greatly ease the difficulty

of your first levels. Spell assistance is the best, but simply finding a “guide” can smooth

your path substantially. You occasionally will have the chance to group with higher-level

adventurers, and get a share of their experience for things they kill. This tactic especially

is beneficial when the player is only a few levels higher than you (you will get a larger

percentage of the share than you would with high-level group members), or the players

you are with are fighting very high level monsters and the experience value is so great that
you get a meaningful share.

The Advanced Player
Do the goals and priorities of higher level characters differ from those of lower level

players? The answer to this question on most Diku systems is “Yes,” as the experienced

and established character must confront the “politics” of the system in addition to the

increased challenges of combat and adventuring. You no longer are playing to survive, but

rather you compete with other players for the equipment you need to reach the highest

levels and the accompanying prestige of occupying such a position on the MUD.

DikuMUD Politics
Although not universal, clan systems are rapidly becoming the norm on many new Diku

systems. While characters inherently belong to an unchangeable class and race for the

duration of their play, the clan system introduces an element of player politics into the

play of the game. This addition generally adds a richness to the texture of the system,

allowing higher-level characters opportunity to utilize their power in forming factions,

plotting war, creating intrigue—all of which tends to enhance the multi-player aspects of

the DikuMUD experience.

Clan systems typically are formed in the following manner. One (or possibly more)

immortal (a wizard or “god” character, for example) sponsors the clan, providing an

“advisor” who will support and council the mortal players; high-level players organize its

structure, setting clan rules and hierarchy; and finally lower-level players constitute the

“ranks” of the clan, bolstering strength with numbers. The purpose of these clan

structures is multi-fold. First, they encourage high-level players to assist newer gamers,

setting the stage for a highly interactive and supportive play environment. Second, they

add a political dimension that interests and involves players on a different level—apart

from the course of exploration and combat which is common to players. Political

structures may become quite elaborate and involved, with treaties among clans straining

under threats of “war” by other clans and their leaders. Rather than creating disunity

among participants, such interclan activity generally tends to encourage player dialogue

and collaboration, increasing the breadth and depth of MUD interaction.

While the highest-level players tend to dominate the political scene, you should note that

this is not a firm rule. Upstart clans often begin with lower-level leaders who rapidly rise

176 Part Il ¢ MUD Player’s Guide
OD DQOHOHDHOHHYG OOO HH SHODG OOOOG OG GDB BSB OGOG GS SS9OSG 980%

to prominence (and typically high level) due to their increased interactions with other

players, and the help that they receive from clan members. If intrigue and politics are your

interest, do not let the fact that you play a lower-level character interfere with your

aspirations of MUD leadership.

The High-Level Player
On the most basic level, the object of the player in a DikuMUD world is the achievement

of experience, and with it advanced levels. While many players enjoy world exploration

and large amounts of player interaction, there is a great attraction to becoming one of the

highest-level players. If you want to make this journey at a reasonably rapid pace, there

are certain things you may wish to keep in mind:

Always Upgrade Your Equipment
As you advance in levels, you often will (on systems which restrict equipment by level)

gain the capability to use increasingly powerful equipment. Obtaining these items should

naturally be of utmost importance, but be sure to “optimize” your gear—do not “blindly”

upgrade to the next level of wearable objects. Equipment often will be tailored to a specific

character class, enhancing an attribute or capability important to that class. Contact other

members of your class to find out what these objects are, and seek them out as you gain

the ability to wear them. Spellcasters will want to increase mana, sometimes at the

expense of armor class or other physical stat modifiers. Warriors, on the other hand, may

want to compromise areas such as intelligence, wisdom, and mana, in return for a greatly

enhanced armor class. Note that alternate sets of equipment often are carried by higher-

level players, to be used in different situations (for example, one set of gear may give large

bonuses to damage, where another may maximize armor class).

Be Social and Make Numerous Allies
On certain MUDs, obtaining higher-level equipment may prove difficult for the advanc-

ing character, without aid from significantly higher-level players. Additionally, increased

social contact with a large number of players will greatly enhance your ability to enter into

the “political scene”—especially on MUDs with clan systems or other formal political

network or hierarchy. If you are viewed as a courteous and helpful player, you stand a

much better chance of receiving favors when you need them. Keep in mind that characters

who are a lower level than you may not always be in a position to help you now, but in

the future they could be very strong. Nothing will stand out more prominently in a

player’s mind than an honest effort by you to help them in the past.

Form Parties

Try to group (or form parties) only with those who are close to your level when seeking

your own experience points. Shares of experience will be more equitable, and you will find

Chapter9 ¢ DikuMUDs 177
1 DPLO®QDOGSGOYHVQSODSOGGSOOOLQIGDHGHSOOQIGOHGHHHOOOISSHHSHHOOOHHOOE

that larger targets may easily succumb to the efforts of a number of players. Be sure to split

treasure and gold between party members, regardless of level—this will keep the group

happy and encourages the idea that everyone is a significant part of the adventure.

Sometimes it may not be your intention to gain experience for yourself, but, instead, for

those you party with. This may be because you enjoy helping new players or you want the

support of the players you are helping—for whatever reason, acts of goodwill like this are

a smart idea on occasion.

Consider Using a Client Program
Client programs can automate the routine tasks commonly performed in the course of

MUDding. Skilled use of such automation may make character preparation extremely

time-efficient, allowing you to concentrate on adventuring and game play, rather than

worrying about the basic needs of the character (food, scrolls of recall, and so on can be

automatically replenished when you log on, for example). While some players consider

themselves “purists” and will not use clients, the consensus seems to be that the use of

such a program does not take away from game play, but rather enhances it.

Summary
The DikuMUD world offers players interactivity, collaboration, flexibility, customization,

and a nearly unlimited amount of adventuring and discovery. This chapter has presented

the basic techniques involved in Diku game play, but cannot adequately describe the

diversity of Diku systems in all of their implementations. No two systems are alike,

offering players the chance to explore many different worlds and meet dozens of people—

while the fundamental concepts, command structure, and technical operation of the

MUD remain similar enough to require little “relearning of the basics” for different

DikuMUDs. The ease of operation and play of these systems continues to increase the user

base, making DikuMUDs one of the fastest growing types of Internet games. So strap on

your sword and shield, grab your armor, and plunge into the adventure of DikuMUDding.

7 & ¥ a

7

= a 5

- . adh

i

an)
= Se

= as =

sa > — zn 7

» Oat se eS Se 7 ~T

t —aae Pe A le oe var - = Dews Oe

. ays oles ® set eerie ¢

ms seeded ¥ = eae maicricemes Sennen ent
7 aa Pare we 6 i Pol ¢ —

Uraieferreneerten reas
pes —anry —

mae para iil pepe Seay ee Aa aie
mrad hers, : -

ne Gee nd

idee a be eae
2 ee) mi, 7 is . f

= ew od Pa Bac est
a ae gs we eee

ee 6: =

isu ier «jive ons oye HALL oe

‘it Brntoeo 0s) hi ro
Grete thus 7 zy Ge so ;

w ; :

mit? et 7 yee a 4

Las > vv? hase-yyiall Pwiirecy

CHAPTER

A

-

IMUD CLIE
NTS

This chapter explains the concepts and terminology associated

with Internet client programs. It explores what Internet clients

can do, how to set them up, and how to maximize their utility

in MUD applications. Although only specific examples and

commands for a small number of client programs are discussed,

the general approaches and techniques introduced in this chap-

ter are applicable to a range of client software, anumber of which

are briefly described at the end of the chapter.

What Can a Client Do?
A client program, at the most basic level, is a piece of software that

handles communications with a remote system (a server). The

most well-known client program is telnet, which enables remote

access to another computer via the TCP/IP protocol. telnet

establishes a connection with a remote system and allows a user

to log in to that system by creating a virtual terminal that mimics

the functions of a console actually attached to the remote

180 Part Il ¢ MUD Player’s Guide
19@GOOOHHH OSGI 9 OOH 99999 SOC 9S090

computer, or server. MUD clients are similar progtams specifically tailored to the MUD

environment, offering greater capability than a simple telnet session. While this function-

ality varies with the individual client, the basic offerings are widely similar.

Macro Functions and Automation
A MUD-oriented client program incorporates specialized features that provide extra

utility to the player. While some MUDs allow players to alias certain commands (also

called creating a macro), a good client program enables the player to greatly reduce the

number of keystrokes required to perform repetitive actions.

Macro Functions
An alias is similar to an abbreviation, allowing a user to create a substitution for a long

command or series of commands, thus reducing the amount of typing required to execute

the action, and allowing complex commands to be entered very rapidly. For example, if

a player (here arbitrarily called Gonzo) had to type cast ‘word of healing’ Gonzoevery time

he needed healing in a combat, it would be very difficult to avoid errors (remember, Gonzo

may be about to die, and needs that healing spell!) and would require a lot of unnecessary

repetition. An alias might enable the player to set the command heal as an equivalent to

the entire command statement, allowing much faster reaction time and less chance of

error during tense moments or in the heat of an online debate.

Alias, or macro, commands allow text and commands to be “tied” to certain keystroke

combinations. This typically allows for faster response, reduced typing for the user, and

simplification of often-performed actions.

Navigation and Speedwalking
Movement on nearly all MUD systems operates in the same way—the player types a letter

corresponding to a direction (such as n, s, e, w, u, d, Sometimes nw, and so on) and the

character moves in that direction. However, this entails a lot of typing and carriage returns

(the Enter key on many systems). One feature common to many clients is the capability

to speedwalk, or to enter multiple directional commands simultaneously, or to abbreviate

commands for movement in a single direction. Using speedwalk, for example, rather than

typing w <return> w <return> w <return> w <return> to walk four rooms to the west, you

could just type www <return>.

Some clients enhance this capability with numerical support. You might, for example, be
able to type 2wnd to move twice west, north, and then down. This makes for much shorter
movement command entries, and less confusion at the command line. The client Tintin,
described later in this chapter, supports this function, as do many other popular clients.

Chapter 10 ¢ MUD Clients 181
2PODOOOGOVOIIOHOHHOOQIYHOHGGHGHOLIHHHHOHO HOV OGHGHHOHOOVOOOS

Triggers and Automation
In addition to speedwalking, many clients allow certain text sent by the MUD to trigger

automatic actions in response to certain input. This type of command is quite powerful—

skilled use of triggers can produce a client environment that virtually runs itself, leaving

the player free to worry about interacting with other players and adventuring rather than

maintaining the character’s constant “basic needs.”

While the format of these commands will vary from client to client; their uses are equally

varied—you can automate nearly any task performed in the course of interacting with a

MUD. Players sometimes call extremely well-programmed and nearly “self-sufficient”

client programs robots or “bots”—they literally can play the game for you. Some people

argue that the degree of automation offered by client programs (robots) can take away

from the gaming experience and challenge.

Programming your client program to “play the game” for you might sound like it defeats

the entire purpose of MUDding. However, properly implemented automation can be

quite useful even to the “purist” player who desires personal interaction over speed. There

are certain circumstances when this degree of automation may be desirable. Characters

often must equip themselves with basic necessities, such as buying and storing food and

drink and retrieving magical items that are always in the same location. A robotic function

can speed up these tasks greatly, quickly performing the actions necessary to ready the

character. In this case, the client is not completely automated, but executes a series of

commands that make it function nearly independently for a time. Many players set their

clients to key on phrases, such as you feel thirsty and other informational statements

from the MUD. Upon receiving this text string, the client might send the programmed

response drink canteen, automatically quenching the character’s thirst without player

intervention.

Programming a bot that can actually gain experience for the player may also suit a player’s

purposes—many systems require a character to reach a certain level before becoming

“immortal” (gaining the capability to modify and expand the MUD itself). The player who

enjoys this aspect of MUD operation may want to gain experience as quickly as possible

to reach this position. Others may simply appreciate the challenge of automating a

character. This approach to automation attempts to control all aspects of the MUD session

via actions. Movement, attacking, sleeping, and healing can all be accomplished by

cleverly constructed “triggers” that continually keep the character “in action.”

Text Manipulation
One useful function of nearly every MUD client is the capability to modify the text

received from the remote system. Certain text may be substituted for a user-defined text

string, specific phrases might be highlighted or colored (depending on the type of system

the client is run on), or other filters—depending on the functionality of the particular

182 Part I © MUD Player’s Guide
GBBOOOOHOGHG9O OHSS O90 SD S89 99 GGSS9 SB 992 OBO9 BSE 9OG98 90%

client—may be applied to text received from the MUD. These features can help make

playing MUDs both more enjoyable, and more comprehensible by suppressing superflu-

ous or annoying text.

Gag commands typically allow text beginning with certain words or including certain

phrases to be omitted from display on the user’s screen. Such functionality can reduce the

sometimes overwhelming amount of text input that actually is displayed on-screen—a

user might set the client to gag any phrase that contains the text leaves the room, turning

off the notification of other characters in a room. Another application in which this gag

feature is useful is the “silencing” of an annoying player. If the character called Obnoxious

keeps shouting an inordinate amount of time and begins to annoy the player with a client,

the player typically can gag any incoming text that starts with Obnoxious shouts.

Substitution commands enable the user to replace certain text strings received from the

MUD with locally defined text. This may enhance the speed of the connection for users

of slower systems, as well as reduce screen “clutter” by simplifying the text stream.

Highlight commands also are available on most clients, which you can use to modify the

appearance of incoming text—often bold, inverse, or colored text options are available to

make key phrases stand out from the rest of the incoming text.

Custom Environment
Certain clients offer the user screen control options, allowing for color support or a split-

screen view in which text sent from the remote system appears in one part of the screen,

while text typed by the user shows up in another. While highly system- and hardware-

dependent, these features enable users to customize their online environment. Split-

screen features often are especially helpful to users new to MUDs, eliminating the

confusion created by incoming text disrupting an unfinished outgoing command.

Alternately, clients often can be configured to pause incoming text after a certain number

of display lines (the screen length), enabling the user to read long blocks of text before it
scrolls off the monitor.

Setting Up a Client
Now you move onto the specifics of installing and configuring a client for use. The
following sections cover the basics of what you need to run a client and how to set it up.

System Requirements
Most MUD clients run on the UNIX platform, although a few are available for other
operating systems, including MS-DOS and Microsoft Windows systems using WinSock,
VMS systems, and the Macintosh. The majority of UNIX clients are written in C code, and

Chapter 10 © MUD Clients 183
2OO9GBOHGHHGHHHIO OHHH OHOOHHOHOOHGHHOQOOHHHOHOOHOOSO OOOO

most compile easily under BSD and System V UNIX, without extensive modification. The
executable files for DOS and Mac systems are usually available precompiled, requiring no
modification to the program code by the user.

Initial Setup
In order to use a client program, the source code must be acquired and uncompressed, and
then finally compiled for use on a particular computer system. The easiest way to get a
copy of most clients is to FTP the compressed file from archives on the Internet. On a UNIX
system, this procedure is relatively simple.

1. Type ftp <host> to open an ftp session.

On UNIX systems, FTP (File Transfer Protocol) is used to transfer files from remote servers
to a local computer. Note that users of different operating systems, such as MS-DOS and
Macintosh, can use versions of FTP compiled for their system, or other utilities to transfer
files from the Internet. See the instructions that came with your specific software for
details.

Later in this chapter (the section called “MUD Clients and Where to Find Them”) you will

find a list of the various MUD clients with the ftp sites and directories where they can be
found.

2. Type ed <directory> to change to the directory that contains the client file. (If

you do not know the exact directory, start in /pub/ to look for appropriate
subdirectories.)

3. Type binary or simply bin to tell the FTP program to prepare for a “binary”
transfer.

4. Type get <filename> to download a copy of the client’s compressed file.

5. When the transfer is complete, type bye to exit the FTP session.

Uncompressing the Archived File
The file retrieved via FTP is placed in a compressed format. Compression is used to reduce

transmission time, disk space requirements, and to facilitate easy organization of archives.

The steps you take to uncompress the file will vary, according to the type of computer
system you are using, and the method of file compression used.

Under UNIX, if the file ends in a z—meaning regular UNIX compression—you can

expand the compress file by typing uncompress <filename>. If the filename ends in Gz, it has

been compacted with the Gnu Utilities compression program gzip, and you must type
gzip -d <filename> to uncompress it.

184 Part Il # MUD Player’s Guide

OHHQQOOOHHHHDHOHOOHHHHHDDD
 DVQPDGH GOGO DB BGVDP9G9BBSVOGVOE

Compiling the Client Program
The first step in getting a client operational after you have the uncompressed tar file on

your local system is to un-tar it. Use the command tar xvf <filename.tar> to restore the

individual client directory and filenames in their expanded form.

tar, a UNIX command, enables a user to compress a number of files into a single file, to

ease the transfer of the program across systems, or to a backup tape or archive. Most

UNIX software (including Tintin) is distributed on the Internet in this format. The tar xvf

<filename> command restores files from the compressed archival file, showing the user

the directories and files created in the process.

The Tintin++ Client Program
Tintin++ is a client program that was originally written with a DikuMUD environment in

mind (the name is said to be short for “The Kickin Tick DikuMUD Client,” although how

this abbreviation was arrived at is unclear). Based on variations and enhancements of an

initial base of code, Bill Reiss and several other programmers put together the enhanced

“plus-plus” version of Tintin, offering users flexible commands and a customizable

environment. (For the sake of simplicity, hereafter, Tintin++ is referred to as Tintin.)

Tintin is most popular among DikuMUD players, but may also be used in other MUD

environments. Note that Tintin is a UNIX-only client—no ports have been made for other

operating systems. The latest release of Tintin++, however, should compile easily under

both SysV and BSD UNIX.

Obtaining the source code for Tintin should be relatively simple, as the program is

archived on many different sites. You might try the archives at ftp.princeton.edu in the

directory /pub/tintin++/dist as a starting point.

Refer to the previous section, “Initial Setup,” for specific instructions on downloading the

source file.

source file, which is the filename for the compressed Tintin source code, will vary with
the version of Tintin that you choose to install. As of this printing, the latest version

(1.5pI5) is contained in the file named tintin++v1.5p15.tar.Z.

Once you have downloaded and uncompressed the tar file, you are ready to compile.

Chapter 10 ¢ MUD Clients 185
SOOQ®BBOGHGHHHOODIHOGHHHOHVHHHHOHHHHOOVVOOO

oge e 6

Compiling Tintin++
Once you have the uncompressed tar file on your local system, use the command tar xvf
<filename.tar> to restore the individual Tintin directory and filenames in their expanded
form.

After expanding the program files, a directory named Tintin++ should have been created.
Switch to the new directory, and read the README and INSTALL files. These files tell you
of any changes to this installation procedure.

At this point you should be able to switch to the sre directory. Type ./configure to
configure Tintin for your system, and then type make depend, followed by make. On most
systems, this compiles the executable file, and you will be ready to play. If you have any
problems with your installation or the program fails to compile, double-check your
procedure. Did you get the correct file? Did you uncompress the file? Were there any error
messages during decompression or file transfer? After making sure that you followed these
procedures correctly, you might check the instructions provided with the source files—

some slight modification to the Makefile may be necessary. If you are unfamiliar with

UNIX and C programming, try to enlist the aid of your local “guru” in compiling the
program.

® @ e

Running Tintin
At this point you should have a compiled version of Tintin on your computer. The

executable file tt++ should be placed either in a user’s home directory, or within the path

of those users who should have access to the program (/usr/local/bin often is a good
location).

You now should be able to start the Tintin++ program. Either change to the directory that

contains the executable file named tt++, or place the executable within your individual

path. Start the program by typing tt++. Later, you will be able to specify a file containing

saved session attributes when starting Tintin by typing tt++ <saved session filename>. The

process of saving session defaults is discussed later in the chapter in the section “Saving

Your Tintin Environment.”

You now should be in the Tintin program environment. All commands you send to Tintin

must be preceded with the # (pound) symbol. The #help command displays a list of all the

commands supported by Tintin, and # help <commanda> displays detailed help fora particular
command.

Opening a MUD Session
In order to connect to a MUD, you must use the #session command. The format is

common to most Tintin commands—you must type #session {session name} {remote

system and port number}. To connect with ELITEMUD, for example, you would type

#session {elite} {130.237.222.237 4000}.

186 Part Il ¢ MUD Player’s Guide

OD BLOHOHHHOHDHVOOO 909 G9BOVYODHN9GFG 9V9999G9BS9999

You can also type the name of a server rather than the IP number, as in #session {realms}

{realms.dorsai.org 1501}. This command will connect you to RealmsMUD.

You can connect to multiple sessions (give them different session names!) and switch

among them with #ses {session name}. For example, you could use #ses {realms} to change

to your RealmsMUD session after you assigned it the realms session name when you

originally connected in the preceding example.

Starting Points
Within the Tintin program, everything you type is sent directly to the MUD, with the

exception of lines that begin with a # symbol. The pound sign (#) is called the command

character, and tells Tintin to expect a command, rather than text, to be sent to the remote

system. You can change the default command character from within Tintin with the

#char command, with the following syntax:

#char <character to become command character>.

The default command character is #, but you can change it using the #char command.

Alternately, you can set the default command character for a certain saved session, as the

first character read by Tintin of the save file will be set as the default command char. The

following section discusses saving and saved files.

Saving Your Tintin Environment
After you configure the Tintin session, you can save your aliases, highlights, and so on,

toa configuration file that you can load for future use. The following two commands make

managing the saved environment easy:

#write <filename> The #write Command saves your current envi-

ronment to a configuration file that you can

open in a subsequent session to access all your

aliases, actions, highlights, and other session

parameters. Note that if the specified file already

exists, it will be overwritten.

#writesession <filename> Using #writesession copies all your current

modifications to the active session to a previ-

ously written configuration file. If the specified

file does not exist, it is created.

MUD Navigation with Tintin
The Tintin client offers users functionality that allows for easy navigation of a MUD

environment. The speedwalking and path functions both reduce the number of key-

strokes required for such navigation tasks, and make the process quite rapid.

Chapter 10 ¢ MUD Clients 187
2OSOSOSGOQOVSHOHGOG OOVSHOGHGHHGH HOO VHOHGHSHOOHHHHHOHHOOBOOOEO

Speedwalking
The speedwalking function provided by Tintin can greatly speed MUD navigation. Rather
than typing a single direction each time the MUD presents the user with a prompt, the
speedwalk function allows the entry of numerous directions, which will be sent to the
MUD in rapid succession. When speedwalk is active, you may type a string of commands
that specify the number of times to travel in a certain direction. For example, the
command 4n2euw is identical to sending n, n, n, n, e, e, u, wto the remote system in
rapid succession.

By issuing the Tintin #speedwalk command, the user can turn speedwalking mode on or
off. (The speedwalk feature is either on or off—the command simply toggles between the
two and requires no argument.) With speedwalk off, the client will not interpret
movement strings, as described previously. This can come in handy if you need to send
a set of characters to the MUD that normally might be interpreted as movement, but
instead serve some other function.

The path Function
Along with the speedwalk option, path settings are designed to facilitate the rapid

movement of the character through a MUD environment. The path function, in conjunc-

tion with speedwalk, keeps track of your movements through a MUD, and allows for

saving of these paths and automatic return to a starting point. The following commands
control the functioning of this feature:

#mark This command clears any previous path data, and marks

your current location as the start of a new path.

#path The #path command displays your current path data.

#unpath This function deletes from the path the last move you
made.

#map <direction> This command enables the user to arbitrarily add a direc-

tion to the end of the path.

#save (#savepath) These commands (save is an abbreviation for savepath)

enable you to save the current path as an #alias. The

character then could execute the same movements in a

later session; you simply type the name of the #save alias,

and the same string of directional commands will be

executed. Provided that the starting point is the same, you

will be able to return to a specific location very rapidly via

the saved path.

#return The #return function “walks” a character back to the

starting point of a path, by removing the last command

from the top of the path and reversing the directions. This

is extremely useful for exploring—you will not get lost!

188 Part Il © MUD Player’s Guide
DQHOOOGHHHHGDHOHOHG9GGVVIVOOGGHGVFIBSOWVVP9DBGBBOBOO'

The #alias Command
One of the most widely used functions of the Tintin program is the #alias command. With

it, a short word or abbreviation can be defined to represent a longer string of text, or a

number of separate commands. This can be very useful for often-repeated commands,

reducing lengthy phrases to a small number of keystrokes.

The #alias command, given without other arguments, displays a list of all aliases currently

defined. Alternately, you can obtain a limited listing of aliases using the wildcard

character *, which denotes any string of text. The command #alias a*, for example,

displays all defined aliases that begin with a.

Variables within Aliases
It also is possible to include variables within aliases, using the format %<0-9>. If a variable

is included in an alias, additional text will be added to the aliased statement when the alias

is executed and given an argument—~%0 is set to all the text after the aliased word, %1 is set

to the first word after the alias, »2 the second word after the alias, and so on. To give an

example, the alias #alias stare emote stares at %1 in disbelief. could be executed with

the following string of text:

stare George

This, in turn, would (on most MUDs), display the following:

<your character name> stares at George in disbelief.

The Greatest Life-Saving Alias

When playing combat-oriented MUDs, always set an alias to recite a scroll of recall on

yourself. The alias #alias rr rec recall <character name> has saved more than one

adventurer’s life!

Alias Examples
Certain commands and actions are commonly aliased by MUD players. The following

examples represent just a few of the most popular, and most convenient, aliases.

#alias cure cast ‘cure' %1

Typing cure Bob would send cast 'cure' Bob to the MUD.

#alias dc drink canteen

Typing dc sends drink canteen to the remote system.

#alias {eat} {get taco bag;eat taco}

In this example, typing eat would send both get taco bag and eat taco.

Chapter 10 ¢ MUD Clients 189
®®@QOSPSOHOHGHOHLVQYHHHOHGHOOO HY HHGOHGHOHOHNIHHHOGOOOHOSOO

- oo

You also can imbed other Tintin commands within an alias, as in the following:

#alias {goelite} {#ses {elite} {130.237.222.237 4000}}

Typing elite causes Tintin to attempt to connect to ELITEMUD. Note that you must

match your braces—each pair of braces (which must be used to separate arguments of
multipart commands) must be completed, or the statement will result in an error.

Aliases and Spells

When playing combat-oriented spells, always alias your spells (or your special abilities

if you play other classes) if you are a spellcaster. Short words such as fry are easy to

remember, and are much quicker to type than cast ‘lightning bolt' while in the middle

of combat. In addition, you may want to alias an entire series of spells that commonly

are applied to a single player (or yourself) during play. This is especially useful for

protection spells, as you can easily design an alias protect that will cast a series of
defensive spells on you.

Verbatim Mode
By default, Tintin interprets, or parses, all text that is typed by the user. That is, every time

text is entered and a return character is detected, Tintin checks to see if the typed text

contains something the user has set as an alias. Should text need to be sent to the remote

system, unchanged or without translation by Tintin, a single # followed by a carriage

return will tell Tintin to send text “as is,” or verbatim. Another single # will end this

verbatim text mode (the #verbatim command achieves the same effect).

#verbatim, which you can abbreviate to a single # symbol, toggles verbatim mode on and

off. In verbatim mode, all text is sent directly to the remote system, without parsing.

Removing Aliases
The #unalias <alias> command removes an alias from the active Tintin session. Note,

however, that using a wildcard in the #unalias command results in the removal of only

the first match, not all matching aliases.

Automation: The Tintin #action
In the course of playing combat MUDs, frequent users will soon notice that many actions

are repetitive and time-consuming. Actions for eating, drinking, and responding to

certain situations encountered during game play require a great deal of typing, and may

detract from the playing experience itself. By using the #action command, the Tintin

190 Part Il © MUD Player’s Guide

1D @QOOOHHOHIHDHOGOHHHH
GSDI DOVPSHHDHD BOSS GH

client enables users to circumvent certain repetitive actions that are triggered by set strings

of text. A user may easily set the client to search for specific strings of text from the MUD,

and if that string is received, a certain command (or commands) is executed without user

prompting—without so much as a keystroke.

#action {string} {command(s)} {priority}: The #action function sets Tintin to scan for

a text {string}, and when that string is received, the {command(s)} are executed. Priority

may be from 0-9 (5 is the default if not specified), which establishes the #action to which

Tintin responds in the event of multiple triggered actions. Actions set as priority @ are

executed first, while priority 9 go last. You can substitute variables (%0-9) from the input

string to be used in the command side of the #action, as in the following example:

#action {%1 pokes you.} {poke %%1}

If the text Bob pokes you. is received, Tintin automatically issues the poke Bob Command.

Auto-Tracking

On MUDs that support a “track” feature, which indicates the direction to a certain target

name, Tintin actions can be easily designed to do the “walking” for you. First, determine

the format of the track messages for a particular MUD—many use the form You sense a

trail <direction> from here!. Then set #action commands for each direction. Use the

following format:

#action {You sense a trail north from here! } {n}

Repeat this command for each direction (remember up and down!), and you should be

all set for hands-free tracking. Issuing the track <name> command should then send you

speeding on your way to the target—but watch out! Because you do not have direct

control over your movement, the auto-track may take you into dangerous parts of the

MUD. (Do not auto-track near deathtraps!)

Customizing the Tintin Environment
Another advantage of running a MUD client program is the capability to customize the

appearance of your screen. Tintin supports a number of functions that enable users to add

color and highlighting to incoming text, to split the screen into two viewing areas, and

even supports features that can radically alter or suppress certain portions of the text

stream. This section demonstrates how these functions can be used to enhance the

playability and readability of a MUD session.

Chapter 10 ¢ MUD Clients 191

2QOSQOPSOODPOGOGHHOOHSHHGHHGHHOOHHHGHHGHGHOOHHHGHHOHHHOOHHHHG

e Highlighting Incoming Text
Users are given several options for {type}, which specifies the manner in which the text

should be displayed. Valid options include bold, red, blue, reverse, and many others. See

#help highlight in Tintin for a complete list.

#highlight enables you to request Tintin to alter the appearance of incoming text (text

sent by the MUD). The following format is utilized:

#highlight {type} {string}

Pruning the Incoming Text Stream
Often, incoming text from a MUD can be extremely verbose, quickly filling the screen

with extraneous messages. The #substitute (#sub) command can easily remedy this

situation by eliminating specified incoming text strings, and replacing them with

different, user-defined messages. This is accomplished in the following manner:

#sub {text} {new text}

Note that if a . (period) is the only character specified in the new text parameter, the line

will simply be deleted. This is commonly referred to as gagging text.

The following are examples of substitution:

#sub {Bob says} {.} This command causes Tintin to suppress (gag) the

display of any lines starting with Bob says.

#sub {*Bob%0} {B0B%0} This line tells Tintin to replace all lines that start with

Bob (due to the presence of the * character) with a

capitalized B0B, appending any text that follows.

To remove a substitution, use the command #unsub {text}. The specified text no longer

will be substituted.

Splitting the Screen
Provided that you are running Tintin on a vt100 or ANSI-compatible terminal (or

emulator), Tintin gives you the option to split the screen into two areas—one which

displays text typed by the user, and the other for text received by the MUD. This can be

extremely useful on busy systems, where typed text often is interrupted by rapidly

incoming text.

#split {line #} divides the screen into two sections, with the top displaying incoming

text and the bottom echoing a user’s input. The line # specifies at which point on the

screen you want Tintin to make the split.

192 Part Il ¢ MUD Player’s Guide

DBQQOOOHHHGHI HV OVOHHHGHHHH VDOOHHHHDI OSV OS GIS IVSOVGOIGE

This flexibility enables users with various-sized screens to split at a line they find

convenient. The #unspl1it command returns to regular display, without the split.

Advanced Functions
While many users use Tintin only for its aliasing and text-handling capabilities, the

program contains several additional features that give it considerable “programming”

power. Conditional operators can specify conditions for automated actions, mathemati-

cal calculations may be performed, and variables can store the results of computation.

Properly utilized, such functions give users the capability to create elaborate automated

systems.

Conditional Operations with #if
The #if command is one of the more powerful commands offered by Tintin, allowing the

configuration of elaborate if-then type operations embedded within other commands

and macros. Essentially, the #if statement evaluates a set of statements, and if the result

is “true,” then the following command is executed. For example, consider the following

statement:

#action {*< %Ohp} {#if {%%0<=100} {flee}}

This action command is first triggered by a text string indicating the player’s hit points,

at which time the #if statement is evaluated to see if an action—in this case the MUD

command flee—is executed. The client will check the value retrieved by the x0 variable,

and if the value is less than or equal to 100, execute the flee command. Expressions may

use the same operators as the #math command, enabling you to evaluate numerical values

in the conditional statement.

Mathematical Operations and Variables
Tintin allows users to define variables to be used in output or evaluation of conditional

statements, giving the user flexibility in designing a customized interface with context-

sensitive responses and actions.

#math stores the result of an expression in a variable, which then is usable by other Tintin

commands. The command takes the form: #math <variable> <expression>—the expres-

sion is evaluated in the same way that the conditional portion of an #if command is

resolved, but rather than returning a “true” or “false” result, the actual calculated value

of the expression is stored in the specified variable.

Chapter 10 ¢ MUD Clients 193
2O DS QOVOMGOOGOLIGY IOHOHGOOGDIHHGHHHHOHEHHHGHHHHHOOHHHHOHHOHO OOOO

Consider the following example:

#math {missile} {$mana/5}

Assuming that you already havea variable named $mana, this expression will take the value
of the mana variable, divide it by five, and store the result in $missile, A player cquid then
set up a command such as:

#alias {zap} {#$missile cast ‘magic missile'}

This alias, when activated by the zap command, causes the spell magic missile to be cast

as many times as possible with a player’s available mana.

Tintin evaluates conditional or mathematical expressions in a manner similar to that of
UNIX, and likewise can accept a range of logical operators, including the following:

Operator Function

! Logical not

: Multiply integer

/ Divide integer

+ Add integer

Subtract integer ¥

> Greater than (result is non-zero or zero)

as Greater than or equal (result is non-zero or zero)

Less than (result is non-zero or zero)

<= Less than or equal to (result is non-zero or zero)

= OF == Equals (result is non-zero or zero)

[= Not equal to (result is non-zero or zero)

& OF && Logical and (result is non-zero or zero)

| or Il Logical or (result is non-zero or zero)

An expression is considered True if it is any non-zero number, and False if it is zero.

Expressions within parentheses have the highest priority, and are evaluated first.

a

The #loop Function
The loop command gives the flexibility of performing a single operation on numerous

objects successively, incrementing a numerical value by one for each “pass” of the

operation. Similar in function to the programmer's for -next loop, you also can use #loop

to successively decrement a value for each iteration of the statement, You might create a

command that uses the #1loop function to pick up all the objects from three different

containers, each specified by a number. In the proper syntax, this looks like the following:

194 Part Il « MUD Player’s Guide

GOHWQOWSOHHOHHHDOOOOHGHHGHHHHHOSOGGGHHDHWOSHSPSIIVIOIVE

#loop {1,3} {get all %®.bag}

This is exactly the same as issuing the commands get all bag; get all 2.bag; get all 3.bag,

but significantly more streamlined and compact.

If the first value specified in the numerical arguments has a greater value than the second,

the loop will decrement, as in the following:

#loop {4,2} {drop %0.ring}

This command produces the result of dropping 4.ring, then 3.ring, and finally 2.ring.

Note that you can embed the #1oop function within other Tintin commands. You could,

for example, create the following alias:

#alias {3keys} {#loop {1,3} {get key %®.corpse}}

By issuing the 3keys command, you would retrieve keys from the first three corpses in the

room.

Executing System Commands within Tintin
The #sys <command> command enables you to execute a shell command from within Tintin

itself. This enables you to back up configuration and similar files without leaving the

client environment.

You also can embed a #sys command within another command, such as alias, giving you

the option to set up automated routines that back up your configuration files or perform

other tasks in the course of aMUD session. The following #alias will make a backup of your

save file before actually performing a #write:

#alias {backup} {#sys cp newfile oldfile:#write newfile}

This routine copies the contents of the file named newfile to a file called oldfile. After this

operation, the current session settings overwrite newfile.

A Macintosh Client: MUDDweller
While the majority of MUD clients run under the UNIX operating system, client

programmers are beginning to address the needs of users who run from other platforms

and lack access to a workstation. MUDDweller, a program written by Oliver Maquelin,

provides basic client functionality for the Macintosh operating system. Allowing connec-
tions through either the Mac communication toolbox or MacTCP, the program supports
multiple sessions, acommand history, and an integrated file transfer system among other

common client features, such as aliasing.

MUDDweller was developed specifically for use with LPMUD-type systems, offering LP

Wizards the capability to up- and download files from their system via the client program

and the ed program on the remote MUD system. However, the program is easily adapted

Chapter 10 ¢ MUD Clients 195
OD OS 2 SD9GSGOHSS899SSSS O00 8 9OG09900009008

to other MUDs as well. MUDDweller provides a line-oriented terminal emulator interface

for connections to the remote MUD, with additional functionality to enhance MUD

interaction.

Configuring MUDDweller
The initial step in setting up a MUDDweller system is to obtain a copy of the compressed

source for the program—many MUD-related Internet sites maintain archival copies of the

program (often in misc. sections under client programs, as the majority of MUD clients

are UNIX-based). Depending on your configuration, you might use either a modem

terminal program to download a copy of the file, or use an application such as Fetch to

retrieve a copy over a TCP/IP network if MacTCP is installed. See the documentation of

your transfer program for specific instructions.

The downloaded file will be in a self-extracting format; double-clicking on the program

icon should start the decompression process. You should eventually end up with a

MUDDweller folder containing the client program and documentation files.

The first time MUDDweller is run, you will need to configure the program for your local

setup. Several aspects of your session must be defined, and you have the option of

modifying a number of default settings.

Connection Type
MUDDweller gives you the option of making a connection to a remote system using either

the Apple communication toolbox or the MacTCP (TCP/IP) driver. You may select one of

these settings under the Configure menu in the Communication section when the

MUDDweller program is started.

If you have an autodialing SLIP or PPP protocol driver installed on your Mac, starting the

client program will initiate a dialing sequence. If this is the case for your system, be sure

that your computer is properly configured and connected to a phone line before starting

the MUDDweller client.

The connection subsequently may be configured with either the Connection or the TCP/

IP Address menu items, depending on the connection method selected. The Connection

option enables you to select the desired serial connection tool, and appropriate settings

for your network configuration—this varies by system. Alternately, the TCP/IP setup

screen will prompt for the IP address (or machine name) and port number of the desired

remote system.

196 Part Il © MUD Player’s Guide

1DQOHOOOHHHHYHOOGOPVHHHHHD VVIYIGPDOPD PSD VVWOVS GS PS OIVGI GOSS

Preferences
Several program environment settings are user-customizable under the Preferences menu.

Screen font This setting enables you to specify the screen font dis-

played by the client program.

Tab width This sets the number of “spaces” a tab represents—pressing

the Tab key will advance the cursor this many spaces.

File type Changing file type alters the default format for text cap-

tured in a session log.

Log size This option enables you to specify the maximum size for a

session log, expressed in kilobytes.

History lines The History lines setting determines the amount of text

that is retained in memory, and will be available for the

user to scroll back and view.

Communication
In the Communication dialog box, the user is offered the option of setting communica-

tions defaults, including the interpretation of end-of-line characters, whether to use a

standard telnet protocol, vt100 terminal emulation option, local echoing status, and

whether to ignore carriage returns received from the remote system. The program’s

default settings are ideal for TCP/IP setups (such as direct Internet connections), but may

need modification if you are using the Communications toolbox to connect to a remote

system. This type of setup often requires only carriage returns (CR) to be sent at the end

of aline, and local echo may be necessary as well so that text typed by the user is displayed

on the “local” screen.

File Transfers
The File Transfers configuration screen presents the configuration options for MUDDweller’s

file transferring function. You can select either MTP or ed-based transfers, as well as default

options, such as the upload directory and the procedure for tab conversion. See the section

“Sending and Receiving Files” for additional information about these settings and their

functions.

Saving Your Configuration
You can save your newly configured MUDDweller session with the save or save as

command, which is found under the File menu. You can load these settings under

subsequent sessions of MUDDweller, so that reconfiguration is not necessary each time
you execute the program.

Chapter 10 © MUD Clients 197
}®QQ®®B®OSOSSSHOYIHHHGHHGHVISOOGHHHHGHHOOI9OHGHGHOHHOOIHOHSHOHHOOOHOOGO

Opening a Session
After initially configuring MUDDweller, you should be ready to connect to aremote MUD

system. Remember that if you are using MacTCP, the session is specified under TCP/IP

Address in the Configure menu item. To open this session, choose Open Connection from

the Configure menu. This causes MUDDweller to open a session at this IP location. If you

previously have saved your configuration, pressing and holding down the Option key

during MUDDweller’s startup will instruct the program to prompt for the name of a

configuration file, rather than starting up a new session with no previously saved defaults.

The User Environment in MUDDweller
Once a connection is established, the MUDDweller environment will split the text

window—the top will display text received from the remote system, and the bottom will

display locally typed text. Note that MUDDweller is line oriented; that is, text you type is

not sent to the MUD until you press the Return key. You can resize the input and output

windows simply by clicking and dragging the separator bar between the top and bottom

screen segments. Additionally, you can resize the entire text window to fit your display—

click and drag a lower corner of the program window to perform this function.

Logging a Session
MUDDweller offers the option to capture the entire text of your session, including user

input and text sent from the MUD, to a file. Choose Log to File... from the Configure

menu, and then select to specify the filename and location of this captured data.

Subsequently choosing the Close Log option from the Configure menu will end the

logging process and close the file.

When connecting through the Communications toolbox, a send break command is

available under the Send pull-down menu. This command sends a “break” signal to the

remote system, where the function of this signal will depend on the nature of the

communications tool being used. This function is not available and is dimmed when

using MacTCP. This command can be used by certain programs to exit remote processes

that have ceased to respond, and other similar “abort” functions. See the documentation

that accompanies your specific connection tool for details on this type of function.

Sending and Receiving Files
Another useful feature of MUDDweller is the capability to transfer files to and from a

remote system via the client program. This function was tailored to suit the needs of

LPMUD “wizards”—the players responsible for the maintenance and development of an

198 Part Il @ MUD Player’s Guide

D@QOQOOGGHHHGHDWDLOEHHHHHHH BOOGSHGHHI9DS VOPSHOGPSSBIOOSE

LPMUD, who have access to the files that comprise the MUD “world.” MUDDweller offers

the option of using either MTP protocol transfers, or using the ed program to import and

export files.

The MTP (MUD Transfer Protocol) protocol was written by the player Mentar of TUBMUD.

It requires that an MTP server is running on the remote system, and provides a direct

protocol for the exchange of files between your system and the MUD. Further, it is only

usable under the MacTCP protocol—you cannot use MTP through a Communications

toolbox connection. If this system is installed on your remote MUD, however, you can

directly upload and download files through MUDDweller’s upload file and download file

commands offered under the Send menu (assuming that you have appropriate access on

the remote system, of course). LPMUD wizards will find this function useful for creating

areas and objects offline, and having an easy way of installing them on the actual MUD

system at a later time.

If your system does not support the MTP protocol, you still may have the option of

transferring your files easily through MUDDweller—provided that the MUD system runs

a standard version of the ed editor. By specifying the ed transfer option in the File Transfers

section of the Configure menu, you can instruct MUDDweller to transport files by sending

the appropriate commands to ed and printing lines of text to the remote file. You also can

download files using this technique. While not as fast as the MTP option, this transfer

mechanism offers compatibility with the majority of LP-based MUDs. You also can

instruct the client in the file transfers setup to send an update command to the remote

system, and interpret tabs as a certain number of spaces for conversion purposes.

The Update and Full Update commands under the Send menu instruct MUDDweller to

transfer entire directories of files to the remote system. Update sends just those files that

are new or modified since your last Update—a list of the files updated and the correspond-

ing dates of the updating are stored in your session file. Full Update transfers all files in

the default transfer directory, regardless of the modification status recorded by MUDDweller.

Note that you may halt the update procedure using command . (period), or by clicking Stop

in the send update dialog box.

Be careful when using the Update command—if you have accidentally set the update

folder to your “desktop ” because this will cause MUDDweller to attempt uploading

the entire contents of your hard drive when you execute the Update command! Be sure

that you specify a folder that contains only MUD-related files that you want to

automatically update with the client program.

Macros
Macro commands give MUDDweller users the option of defining short keystrokes to

represent long, complex or often-performed actions. The login and logout macros are

Chapter 10 ¢ MUD Clients

invoked automatically when opening and closing a remote connection, and additional

macros can be assigned to any combination of the Shift, Control, or Option keys, along

with an alphanumeric key.

To create a new macro, choose Macros from the Configure menu. You can edit previously

defined macros by selecting them from the Macro: name window and then editing the

macro commands in the text box. You also can remove the current macro by clicking

Remove, and save changes by clicking Done. Clicking New enables you to create a new

macro—you first will be prompted for the key combination you want to define. After

selecting New a blank macro is added (described in the Macro window as your chosen key

combination)—you now can edit the commands of this newly created macro in the text

window, and finally save by choosing Done.

Macros consist of one or more lines of text, each line containing only one command.

Blank lines are ignored by MUDDweller, as are any lines beginning with the # character.

Commands execute sequentially until the end of the macro text, or a user interrupt

(<command> .) is received. The command line must begin with one of MUDDweller’s

defined macro commands, which, in turn, usually is followed by certain parameters or

text. The following commands are supported:

echo <text> This command displays the specified text to the

user’s screen—nothing is sent to the remote

MUD system. Note that a carriage return is not

automatically sent at the end of a line—you

must specify this action by ending the text

string with a \n character combination.

match <text> The match command instructs MUDDweller to

wait for the specified text to be received from

the MUD—operation of the macro halts until

this time. Note that the text must match exactly,

as there currently is no wildcard support.

passwd This command prompts the user to enter a

password, which, in turn, is sent to the MUD. A

command such as this is useful when designing

automated login sequences that do not store the

actual password of the user. Note MUDDweller

does not display the typed password.

quiet The quiet command toggles “quiet” mode, where

no output is displayed in the main window

except the output of echo macro commands

(which always is displayed). You may find this

feature useful in automated login routines to hide

user names and passwords. A second command,

quiet off, returns the display to normal, and

MUDDweller automatically reverts to normal

display mode at the end of the macro.

2BQPHSHGHOS VO 8 OH 9GHOGSSGO99HSHSHSHHOGO9GHHOSHHOVHOOOE

200 Part | © MUD Player’s Guide

OOBQOOIHHHGHGOHHHOOGHHHHHHHHOOGHH9HHD HVS OOHGHSIBVSVOSVSOS

send <text> This command sends the specified text to the

MUD. As with echo, a carriage return must be

specified with the \n notation.

wait <number of seconds> The wait command halts execution of a macro

for a specified number of seconds, at which

point the macro will continue with the next

command line.

Special Characters

In addition to the carriage return (\n), you can include other characters in macros as well.

The \t sequence sends a <tab> character, \f sends a form feed, and \b generates a

backspace. Additionally, you can produce special character codes by typing \ (backslash)

followed by an octal digit. The most important of these is <contro1> c, which is generated

by the \3 notation.

Another Client Program
Dozens of client programs are available via the Internet, each providing numerous

options for MUD players. Some, like Tintin, were designed with particular MUD systems

in mind, taking into account the special needs of their users. The most outstanding

features of one of the more enduring and popular programs, TinyFugue, are discussed in

the following sections. While TinyFugue is an older program, the robust list of features

and the flexibility of the client maintain its popularity with the online community.

TinyFugue was developed with users of MUCK and MOO systems in mind, and is quite

adaptable to the demands of a social- MUD environment.

TinyFugue
The TinyFugue system has long been a popular client interface for players of MOO, MUCK,

and many TinyMUD-derivative systems. With a robust feature list supporting multiple

sessions, macros, triggers and automation, command history and other functions,

TinyFugue offers users maximum control over their environment. Although more recent

programs such an Tintin++ have gained large followings, many MUD players continue to

use TinyFugue because of its power and flexibility in the hands of an experienced client

programmer.

Loading “Worlds’—Session Management
TinyFugue provides commands that allow users to manipulate several remote MUD

sessions simultaneously. Following are some basic commands you should know:

Chapter 10 ¢ MUD Clients 201
HSQLQWIVSHOGOHHLOHOHHHGHGHOHGHOSHHOHGOGHHOSHHHHOOGHHOSHOOOE

/addworld: allows adding a system to your list of known MUDs, using the format
/addworld <session name> <host> <IP> <associated macro file>

/unworld: remove a world with this command

/world /world <name> will attempt to make the specified world active

/loadworld: this command will load the defaults for a specific world

/saveworld: you may save a particular world's defaults with /saveworld <name>

/listworlds: this command lists all currently defined worlds

Macro Functions and Automation
TinyFugue allows users to define complex macro functions, complete with optional

associated triggers and execution probabilities. Macro functions can be defined in the

following basic ways:

/def <name> = <body>

or

/def [-1[-]] [-p<priority>] [-c<chance>] [-t<"pattern">] -f<function>] [<name>]

[= <body>]

The def command provides a powerful interactive tool to control and manipulate the

MUD environment. At the most basic level, you can use this function to define an alias—

the command /def ga = get all would alias get all as ga. However, as the second format

shows, there is a whole range of user definable options, allowing a priority and percentage

chance to be included in the automatic functioning of an automated response to

incoming text (whew!). This obviously is more complex, but offers significant flexibility

and high degrees of customization to the environment.

/trig <"pattern"> = <body>

The /trig command provides for session automation—the client executes specified

commands upon receiving certain text from the MUD. A derivative of the /def command,

you can customize triggers to include information about percentage chance of execution,

priority, and so on. The TinyFugue online help displays a number of useful examples for

constructing automated actions of this complexity.

Additional Information—TinyFugue
TinyFugue is a powerful client program, offering many additional functions and options

that enable you to create a truly custom environment, tailored to the needs of a particular

system or group of systems. More detailed information can be found in the distribution

package which is maintained at the following sites:

beta.xerox.com in the directory /pub/MOO/contrib/clients

ftp.tcp.com in the directory /pub/MUD/Clients

202 Part Il ¢ MUD Player’s Guide

GDHBWQOOHHOHHHVVWPOHHGHHDOSBVOOGSOHHIDVVOPOHSHIDIO®

Glossary of Client Terms |
What follows is a quick summary of terms you might encounter while discussing clients

with fellow players or while reading the documentation on whatever client you choose

to use. Thanks again to Jennifer Smith for permission to use these from the MUD FAQ.

Auto-login—Automatically logs into the game for you.

Highlighting—Allows boldface or other emphasis to be applied to text. This often is

allowed on particular types of output (such as whispers), or particular players. Regexp

means that UNIX-style regular expressions can be used to select text to highlight.

Gag—Allows selected text to be suppressed. The choice of what to suppress often is similar

to highlighting (players or regular expressions).

Macros—Allow new commands to be defined. The complexity of a macro varies greatly

among clients; check the documentation for details.

Logging—Allows output from the MUD to be recorded in a file.

Cyberportals—Supports special MUD features that can automatically reconnect you to

another MUD server.

Screen Mode—Supports some type of a screen mode (beyond just scrolling your output

off the top of the screen) on some terminals. The exact support varies.

Triggers—Supports events that happen when certain actions on the MUD occur (such

as waving when a player enters the room). (This can nearly always be trivially done on

programmable clients, even if it isn’t built in.)

Some of these clients are more featured than others, and some require a fair degree of

computer literacy. TinyTalk and TinyFugue are among the easiest to learn; Tcltt and VT

are more professional. Because many MUDders write their own clients, this list is

constantly changing, so be sure to ask around.

Summary
Clients can be incredibly useful and offer a diverse range of functionality to MUD players.

Because anyone with a knowledge of programming can write a new MUD client, the

number of clients changes often. Also, because many of the existing clients include their

source code on FTP sites, there are many modified versions of the popular clients. Tintin,

for example, also is available in a version called Tintin++hacked, which is slightly different
from the original version of Tintin and contains some improvements to the code.

A client can be very useful tool for making MUDding easier and more efficient. This

chapter has only presented the rudiments of client use and programming—the limits of

their usefulness are dictated solely by the limits of peoples’ creative application. Simpli-

fying a user’s interface, organizing the display of information, and reducing keystrokes of

Chapter 10 ¢ MUD Clients 203
GOQGDSOSSD SS GSS OS9SG GOS 8 9O9OS60GGS099 9899900089000

ee

the client is an incredible boon for avid MUDders. In the hands of a clever programmer,

a client virtually can become robotic, performing with little or no user input, and possibly

even fooling other players into thinking that it is a person and not a programmed

machine. In either extreme, the client is a powerful tool that MUD users should not be

without.

aA a :

“ xn i ae ee
7 a

t fs _
2 ‘

¥ oa ’s r
w

re

_ A,

"

: ee =
a ,
i a

rn F /

A
e ‘

“Fy

I " - -_

ae ,
aan, n

~ » =
: we :

; . _ n° = 1 . o _ " . _

, zT a Pa Ny ae a 7 el _ iu _ — ~~ 7 . : . :

Sw ew ie |= adn

: nem bain ee eee ET)
ed) ee
Sha mes® Ge ,%e @ i)

a ? 2d» « a

; = pega
=ihd ng or

CHAPTER

BEING A WIZ.
(MMUDDING AT THE NEXT LEVEL)

The concept of a wizard means many different things on different

types of MUDs. But as a generalization, it usually is used to designate

a player who has been granted certain privileges beyond the normal

player. These privileges often include the capability to build or

program areas (if that power is not given to everyone), the capability

to take action against abusive players, the capability to alter or approve

regions of the MUD, or even the capability to delete, modify, or snoop

on players. Some of these powers are discussed in detail in this chapter,

but the next section of this book is devoted exclusively to program-

ming and wizard functions with chapters on the specific types of

MUDs. This chapter is more for the user who wants to be familiar with

the powers wizards have, what being a wizard is about, and how to

become a wizard.

206 Part Il ¢ MUD Player’s Guide

1ODBGOSOHHOHHHHOLVOOHHHHHDOHOVOVDSOHHIBIIWOIBOOS*

What is a Wizard and Why Would You
Want to Be One?

In this chapter, wizard is used as a generic term. A wizard could be called a god, elder,

administrator, janitor, builder, staff, or any of a number of other possible titles. On most

MUD systems, however, there is a least one class of player that carries the title “wizard.”

Wizards are super-players or super-users. They have powers beyond those of a normal or

mortal player. In fact, on combat MUDs one big advantage of being a wizard is that you

are immortal—nothing can kill you. Being a wizard certainly has its privileges—being

immortal certainly is a nice perk.

Some general wizard powers include the following:

H Unrestricted teleportation—The capability to teleport is available to players

on some MUDs (especially MOOs) as a general power and sometimes as a spell

within certain guilds. This type of teleportation usually works in only one way.

For example, I could open a gate to someone else and they could step through it

to me. Sometimes MUDs even allow teleportation directly to a player (this tends

to be disastrous on MUDs that allow player killing). Wizards usually can teleport

a player directly to the wizard’s location or teleport directly to any player or

room. Wizards don’t need a special spell for this.

@ Building or Programming—tThe capability to build new rooms and program

new objects often is restricted. On LPMUDs and DikuMUDs, only wizards have

this power. On MOOs, MUCKs, and MUSHes, everyone is allowed this power,

but to add new rooms they typically need approval—usually by a wizard. Wiz-

ards are responsible for the creation of new areas on MUDs and for the

organization and geography of the MUD world.

@ Snooping—Snooping enables wizards to, well, snoop on other players. They see

everything the snooped player sees and does. This is very useful for debugging

and checking on players who have been accused of harassment or cheating. It is

obvious, however, that this power is one that can be easily abused. It often is

restricted to only the highest level wizards. Abuse of this power will likely cost

you your wizard status. This power primarily is found on the LPMUDs and

DikuMUDs. However, on MOOs, MUSHes, and MUCKs—as well as on LPMUDs

and DikuMUDs—t is possible for a wizard to become invisible (sometimes called

“dark”), which enables him or her to spy on players.

& Disciplining players—Some players may abuse the system, cheat, harass other

players, or just break the rules. Wizards are responsible for ruling on these

complaints and taking whatever disciplinary action is necessary. Some repri-

mands include deleting the offending player, suspending his or her account for a

period of time, banishing his or her site (no one from that site on the Internet

can connect), and on combat MUDs, taking away experience points or gold.

Chapter 11 ¢ Being a Wizard (MUDding at the Next Level) 207
20OOCE DOQQ WOSGOGH SOW HHGHHOHHSOHHGHHOSHHOOHOHOE

@ Player problem resolution—Bugs or other freak things often kill players, take

their money, or otherwise impede them. And when this happens they usually

complain to a wizard, because gaining levels and making money takes a lot of

time. Wizards can, at their discretion, compensate players for lost experience

points, gold, or items. Note that not all wizards can do this, however.

As you Can see, some of these powers are quite enormous. The power to ultimately destroy

anything that exists in the world, the power to read others’ virtual thoughts (snoop), the

power to create new space and creatures—these powers are the reason why the highest

level wizards are often called gods. And in the MUD world, these powers are god-like.

These powers do not come without responsibility, however.

On most MOOs, MUSHes, and MUCKs, there are only two levels: normal players and

wizards. Occasionally you will see a reference to a god—that player generally has no real

power as far as commands go, it’s just a title. It denotes the lead wizard of the group, the

head wizard, or the wizard with the final authority. While on LPMUDs and DikuMUDs

there are normal players, several levels of wizards, and then the gods (and occasionally a

high god who has the final authority). Note as well that LPMUD and DikuMUD gods may

not have additional commands that other wizards do not have (although often they do),

but their greater power lies in the authority on MUD issues. It’s a distinction that has to

be made, as MOO, MUSH, and MUCK wizards are closer to being equivalent to LPMUD

gods, not LPMUD wizards.

Most MUDs have one person or a small group of people where the power resides—often

called the gods on MUD. These players (the gods) usually are the ones who own the

machine, or the account on which the MUD runs, or the people who have written a vast

majority of the MUDs. This group in power, usually the gods, have the power to make,

promote, demote, and delete wizards. They usually are the ones who set the policy and

deal with wizards who get out of line or abuse their powers (which happens fairly often).

As you can guess by the references to promotion, demotion, and a god-level wizard, there

often are multiple levels of wizards. Levels are created based on administrative needs and

are granted based on performance, aptitude, and seniority (and politics, but we won’t go

into that yet). The lowest level is the basic wizard or builder. This wizard’s responsibility

is to create new regions on the MUD. This type of wizard does not have the authority to

handle player problems or other issues that may arise.

Above this level usually is an administrative or elder wizard who can compensate and

discipline players, oversee and approve lower level wizards’ work, and handle various

other administrative tasks. This level reports directly to the god-level wizards.

This system of wizard hierarchy is not as likely to hold true on MUDs where everyone can

build. Every wizard has access to the same commands on MOOs, MUCKs, and MUSHes,

but wizards (as they do on LPMUDs and DikuMUDs as well) still tend to stratify according

to their “jobs”’—for example: wizards who are responsible for building inspection/

control, wizards who focus on dealing with player conflict and complaints, and wizards

who mainly program the core of the MUD.

208 Part | © MUD Player’s Guide
GHOVOOHHOHHHHHHOSGHOHHHHHHVVWOSOGHOHOSHB®

Some MUDs may have fifty different wizard levels while others may only have one level,

or even one wizard (although that is not likely). You'll need to get a feel for how the wizard

levels work on each individual MUD.

What is a “Wizard” or “God”?

Gods are those who own the database—the administrators. In most MUDs, Wizards are

barely distinguishable from Gods—they’re barely one step down from the God of the

MUD. An LPMUD Wizard is a player who has won the game, and can now create new

sections of the game. Wizards are very powerful, but they don’t have the right to do to

you whatever they want; they still must follow their own set of rules, or face the wrath

of the Gods. Gods can do whatever they want to whomever they want whenever they

want—it’s their MUD. If you don’t like how a God acts or lets his wizards act toward the

players, your best recourse is to simply stop playing that MUD.

A more appropriate name for wizard would probably be janitor, because wizards tend

to have to put up with responsibilities and difficulties (for free) that nobody else would

be expected to handle. Remember, they’re human beings on the other side of the wire.

Respect them for their generosity.

This should give you a basic feel for some of the powers and responsibilities of being a

wizard. The following section details programming and specific wizard commands for

various different kinds of MUDs.

Do | Want to Be a Wizard?
Do you want to be a wizard? This is a personal decision. If you think it would be fun to

create a world rather than to play in one, then you probably would enjoy being a wizard.

Being a wizard is a lot of work, and it isn’t all fun. MUDs often have a lot of politics at the

wizard level. This can affect promotion, having your work approved (some MUDs require

a higher level wizard to approve new creations before they are added to the MUD), or even

cause you to be deleted. MUD politics can be really bizarre, but then so can player politics.

Personally, I have been a wizard on several MUDs and have enjoyed it. But it also is nice

to play or just hang out, without any responsibilities. And when you are a wizard, you will

be the target of many tells and shouts from players looking for a wizard to help them with
a problem. Being a wizard has its rewards, but also its drawbacks.

I’ve enjoyed being an active wizard on one MUD while at the same time, playing on one

or two others. Doing this enables you to enhance one world as a wizard and take a break

and kill monsters as a player. Some MUDs even allow wizards to have a second player
character that they can use to run around with and kill a few monsters (the player has a

wizard character and a normal player character, but both are controlled by the same real

person). Anice break from developing a world. Being a wizard on multiple MUDs is pretty
difficult. You'll probably end up only really working on one.

Chapter 11 © Being a Wizard (MUDding at the Next Level) 209
DODOQQDOVOHHGSOOLVIIHOHSOSOHOY9G9HHSOGHOOH9OOO

Deciding whether you want to be a wizard is a tough decision. It certainly can be fun to

remain a player, and if you are on a combat MUD and considering being a wizard, it

probably means you are one of the most powerful players around. It’s always a bummer

to go from being one of the most powerful players to low man on the totem pole (new

wizards are pretty lowly). It can take a long time to work your way up to a high level inside

the wizard hierarchy. Creating worlds is not always easy.

If you decide you want to be a wizard, good luck. If not, enjoy playing MUDs—for many,

simply playing is more fun than being a wizard. If you want to become a wizard, read on!

How Do | Become a Wizard?
Becoming a wizard is one of the things that varies most among different MUDs and

different types of MUDs. On social MUDs (MOOs, MUSHes, and MUCKs) and DikuMUDs,

the appointment of wizards and their equivalents often is very political. Because social

MUDs often have no levels or hierarchy among players, there is no real firm basis for a

system to create wizards. Players often just start talking to wizards and they get to know

each other. And next time a new wizard is needed, the wizards pick someone they know.

Not all MUDs base their selection process on “an old boy network” system, picking friends

or wizards from other MUDs to become the new wizards—some use other methods as well.

Some MUDs look for existing players that seem competent, familiar with the MUD, and

wiiling to devote the time necessary to be a good wizard. Others use a more familiar, but

sometimes more difficult, system like that found in the real world, such as resumes and

job interviews.

It seems, however, that most wizards on social MUDs got to be wizards because they were

around when the MUD was started so they got in on the ground floor. Or, they were

wizards on another MUD, and when a MUD needed wizards, they looked for people with

experience. Becoming a wizard on a MUD can lead to opportunities as a wizard on other

new and existing MUDs.

If you want to bea wizard, it might be a good idea to look at the MUD-related newsgroups

(see these in the MUD directory, resources section). Many new MUDs will post that they

are looking for wizards on the newsgroups. They often will ask questions about your MUD

experience, such as, “Have you ever been a wizard and on what MUDs and systems and

what kind of work have you done?” It’s a good idea to treat these questions like a job

application and promote your creativity (as a good person to make new areas on the MUD)

and to mention any programming experience you may have in real life (LPMUDs, for

example, work a lot like UNIX and use a programming language similar to C). These extra

advantages can help get you in the door as a new wizard. And if you decide you don’t like

the MUD, you now have experience and it will be easier to get a wizard position on another

MUD.

210 Part Il © MUD Player’s Guide
19HOOHOGDHHHGHHIDWSGHHOHHHDVPOGOGSGHHOHI I VOS OSGOOD’

The Wizard Structure on a MUSH
MIUSH = The Dark Gift MUSH (128.2.21.47 6250) has three different levels of what we have been

calling a wizard: staff, admin, and wizard.

@ Staff—To become a staff member, watch for a message on the MUSH or in the

Usenet newsgroups requesting more staff members. Then submit a resume and a

letter explaining qualifications and why you want to be a staff member. Then

the current staff, admin, and wizards vote on the applicants. The responsibilities

of the staff members are to help players. This might mean creating objects for

players (on this MUSH, players can buy objects) or judging. This MUSH has a

combat system that is not built into the MUSH, so it must be administered

manually by a judge (staff members don’t have many responsibilities for the

MUSH as a whole).

@ Admin—The admins are a step above the staff members. They usually are

chosen from staff members who are performing well. To become an admin, you

would want to be seen online often and perform well, and then, when an

opening is available at the admin level, you will have a chance of being pro-

moted. Admins are in a gray area between staff and wizards. They have some real

authority—they can make buildings and approve things on a higher level than

staff—but still report to the wizards.

@ Wizard—A wizard oversees his or her department(s) and ensures that every-

thing runs smoothly. Wizards primarily come from the admin level or have been

around since the MUSH started. They generally make sure everything is done

properly and deal with the things that come up that no one else is equipped to
deal with.

As you can see, there are many arbitrary decisions in the process of appointing wizards on

this MUSH. The existing wizards decide who should join their ranks and who should be

promoted. This is not an uncommon system, but it is not the only system. It is likely that

you will find MUSHes with fairly different structures in the hierarchy of wizards. The

preceding example is just a sample of what you might expect to find.

Becoming a Wizard on an LPMUD
LP LPMUDs have a defined procedure for becoming a wizard. To achieve wizard status on an
MUD LPMUD, there are two standard requirements: a certain level, and the completion of a set

of quests. The level requirement is fairly obvious—you have to work your character up to

a certain level, often 20 or 30. When you reach this level, you then can qualify to become
a wizard if you have completed the other requirements. Look on the MUD you play for
the specific level. On some LPMUDs, you can not advance past the wizard level—for
example, if you want to remain a player, you might have to remain at level 19 forever. On
most LPMUDs, you can advance past the level required to become a wizard, and then you
can attempt to advance to wizard status at any time.

Chapter 11 © Being a Wizard (MUDding at the Next Level) 211
) BODO GOOLQVISHGHHH HOOP HHHHHHHOOHHHHHHHHOOOHOOO

The other common requirement for becoming a wizard is the completion of a set of quests.

A quest is a special adventure that has a specific goal. For example, a common quest (one

of the default quests built into LPMUD) is called the orcslayer quest. It involves finding the
orc shaman, a monster with a special sword called an orcslayer. The orcslayer is a short

sword that does extra damage to orcs. After you have found the orc shaman, killed him,

and retrieved the sword, you must return it to Leo the Archwizard. Leo the Archwizard

usually resides in the basement of the church. After you return the sword, you will have

completed the quest.

Usually, when you complete a quest, you also will get bonus experience points for solving

the puzzles involved in the quest. Most are more complicated than the orcslayer quest,

which usually is one of the first quests that people solve. You probably will want to look

at solving quests regardless of whether you plan to wiz (the act of becoming a wizard).

Quests bring experience points and other benefits. Sometimes quests are required before

you are allowed to join a special guild or other group. Quests also are occasionally required

to advance to certain levels, although this is pretty rare.

Most LPMUDs list the quests that are on the MUD (and how many you need to complete

to become a wizard), as in the following example:

Welcome to The Adventurers' Guild
You have to come here when you want to advance your level.

You can also buy points for a new level.

Commands: cost, advance, spend, list (number).
There is an opening to the south, and some blue shimmering

light in the doorway.

There are two obvious exits: north and south.

a book in a chain.

> list
You have 10 quests unsolved.

You must solve 10 of these.

This particular MUD has an unusually high number of quests. As the ranks of existing

wizards swell, you will find that some MUDs make it much more difficult to become a

wizard. On other MUDs, it may be much easier, as the MUD may be in need of new wizards.

The following sample session shows details of individual quests:

> list 1 in

Retrieve the Orc slayer from the evil orc shaman, and give it to Leo.

> list 2
You must compete in the Trial of Champions!

A galley will take you to Trial Island where you must listen to

Felionus Moneybags. He will give you your instructions. You can acquire a

alle

oy Biahing the Horn of Resounding which is found at one of the Realms docks.

This is for levels 15 and over.

212 Part Il ¢ MUD Player’s Guide

1D GDDOGDGHHGHHG HOG HGHHGSH GB S8S9SD9SSFBVOO9998

Or if you have completed them all, you can use the following:

> ‘list

You have solved all quests!

As you can see, the MUD doesn’t provide you a whole lot of information on solving the

quests. You may want to consult with other players to find out the details of what you

must do for the quest. Because many MUDs have harsh penalties for those helping

someone on a quest, players might not be eager to help you, but they should at least be

able to provide some guidance.

On many LPMUDs, after you achieve the required level and complete all the quests, you

will be able to automatically become a wizard in training—you don’t need another

wizard’s approval. The way it usually works is that you walk into your guild hall and

advance your level as normal. An announcement will go out to the MUD that is similar

to “A new wizard is born.” Now you are a wizard!

On many older LPMUDs, you will need to log off and log back onto the MUD to become

imbued with your new wizard powers (for your wizard commands to work).

On some LPMUDs, however, it is not quite so easy to become a wizard. For security

reasons, many LPMUDs have removed the capability to become a wizard automatically,

and now require another wizard’s approval. This prevents players from quickly becoming

a wizard without anyone noticing and wreaking havoc on the MUD.

Some LPMUDs have additional complicated requirements. These may include that

players or wizards (or both) vote on new wizards, which might require you to be more

proactive in making friends, by giving newbies help or money, or working with others.

At the very least, you will need to avoid making enemies. Some LPMUDs have tests or

other requirements. These additional requirements vary widely among MUDs.

Summary
This chapter has provided information about some of the powers and responsibilities of

a wizard. This might give you some idea of whether you want to try and take the leap and

become a wizard. If you do, you will want to read the next section of this book, which
discusses details on programming and navigation of the various different types of MUDs.

If you have decided that being a wizard is not right for you, you still might want to glance
through the next section, especially the areas on the types of MUDs that you can choose
to play. Understanding how the game works can give you an edge in playing.

mUD PROGRAMIMING GUILE

Chapter 12

The Other Side of MUDs

Chapter 13
Essentials of LPC Programming
(on LPMUDs)

Chapter 14

Programming MOOs

Chapter 15

MUCK and MUSH Programming

Appendix A

The MUD Yellow Pages

Appendix B

MUD Glossary

Appendix C

MUD Clients and Where to Find Them

Appendix D

Available Servers

12
CHAPTER

THE OTHER SIDE oF NUE

As we have discussed throughout this book, most types of MUDs are

programmable. Some MUDs allow any player to create new objects

using some custom interface, while other MUDs have advanced

programming languages that are modeled from real world languages

such as C and Forth. Unfortunately, in this area, MUDs tend to vary

drastically. Programming an LPMUD is nothing like programming a

MUSH.

MUD Servers
We have talked about using telnet and other clients to connect to a

MUD. Up to this point, however, we haven't spent a lot of time talking

about what a MUD is. When you connect to a MUD, you are

connecting to a special piece of software called a server (perhaps you

have heard of client-server software). MUDs work by having many

simple clients connect to a server that processes all the requests and

interaction of the clients.

216 Part Ill © MUD Programming Guide

1DODDOOHOHHGHHHH IHS GH9SHD OS VOOVGOH'

Other multi-player games, such as DOOM, use another method, called peer-to-peer, to

support several players. In a peer-to-peer game, no one computer handles all the

interaction (as does the server on a MUD), but instead, all the computers send all user

information to every other computer. This tends to create a lot of network traffic and

generally is inefficient for a large number of players. Because of this, you will not find

many peer-to-peer games that support more than eight players.

Now, after that brief diversion, let’s talk about the MUD server. As you may have guessed,

the distinctions among LPMUDs, DikuMUDs, MOOs, MUSHes, and MUCKs are the

servers that run them.

As you play different MUDs that use the same server, you will find differences among

them. This is because the majority of MUDs in existence are programmable. Not only is

the source code of the server available for anyone with programming knowledge to

change, but often the server itself has its own internal system—usually called the MUDLib

or core—for creating the MUD world.

Different servers deal with programming in different ways. LPMUDs use a programming

language called LPC (Lars Pensjl C), which resembles the popular C programming

language (the C in LPC) and is very powerful. MUCKs use a language called MUF—Multi-

User Forth. MOOs and MUSHes have their own systems that don’t resemble existing

programming languages for creating objects and developing the MUD world.

There are many types of MUD servers available on the Internet. The most popular ones

are the five discussed in this book. Some of the servers discussed in this book have

derivatives that closely resemble them, but are not necessarily the same. For example, the

MudOS server is based on the LPMUD server, but has been developed along different lines

than the current LPMUD server. You will find many similarities between LPMUD and

MudOS, but you also will find many features that exist in one server, but not the other.

Another type of server, called DGD (Dworkin’s Game Driver), on the surface looks to be

similar to LPMUD and even incorporates the LPC language, but is not derived from the

LPMUD server. DGD is a new server that is designed to be LPMUD-compatible but adds

a new level of programming flexibility—in fact, MirrorMOO, running on a DGD server,

emulates the MOO server.

The MUDLib
MUDLibis aterm from the world of LPMUDs. On LPMUDs, the MUDLib isa set of program

code written in LPC that implements central elements of the MUD, such as rooms,

monsters, players, and the combat system. Because the MUDLib is written in LPC, it can

be easily changed and altered without requiring that the MUD’s server code be recompiled.

Because the set of programs that make up an LPMUD’s MUDLIib often interact with each

other (for example, the monster component and the player piece interface with and use

the combat system), they are grouped, which is why the MUDLib is considered a whole.

Chapter 12 ¢ The Other Side of MUDs 217
®QQOGGGSHOHSOHGHOHGHHHSHHHOHHOHHHHOHIOOO

And, not surprisingly, several different MUDLibs develop and run different LPMUDs, or

modify them or, in some cases, write them from scratch.

The uses of different MUDLibs contributes to the inconsistencies among different

LPMUDs. MOOs also have something similar to a MUDLIib that is called a core. The core

is what makes MOOs different, like the many differences between LambdaMOO and Jay’s
House MOO.

Summary
The remaining chapters in this book cover three very different kinds of MUDs. They deal

with the specifics of the MUD server. LPMUD is a very specific MUD server, which is why

it has a different set of commands. DikuMUD, MOO, MUSH, and MUCK also are different

varieties of servers.

You will want to read only the chapters in this section that relate to the MUD servers on

which you want to work (or play).

Don’t just put the book down now, thinking the rest of it is just programming. Be sure to

glance at Appendix A, which provides a list of MUDs and other online MUD resources. If

you don’t read any of the programming chapters now, you likely will find them useful in

the future. Once you become a wizard, or if you decide to starting creating objects on a

MOO, MUCK, or MUSH, you will find the chapters on programming very useful.

~—- =O 1 the ot
4a ee oe

a9 (a 13@ ;
- chine

af prisciebic eee

perce VOR Thete oar | rey Bee
Yaa. — ve fine i aa tra mit amd 1 Hank SPE i

oar up 11 poh
Peaueces CIV “i> 29 ahee@ Thsll andere e108 Gs ee dusty "
—_ oa oe aq eC 7a ;
: ran; PA Tulse

a = rm 1m rime is a Cae it :

Gecasal! “ata & gee Aigetrlls your aie,
em id) Ver qcaen hs Apps Nd PSs ap pea
a ft co qe~ Of diese tery He nates

cas 5 ap, est ll ne gil ahi i Abe ae
; Roe pas : 9 +e6 :

ie? a) i o) vrs; SGT GV. qe ie ae ne a

\ . wil rio dua ham, oye) deg als
j q 9 het Aoees «

it * = ee ary mA pod

- yaa | iio te = ey A el? a r,
: orwan wos ig vee Apap oq),) gee, ~ >

oe 2

iv

oh Se [Tir ee ioe is

. aS 9 Pere

f + mi.

. are Lp (hin fed ear) eae inet oe
by Q nen we > a

papas ety aim y ramen PES
io 7 ee rerouting . as

a)

=

iis TPs Wuliap im }

- »e 2

Pfs 1 a ty hey " na - :

. . ett va aa " : fl

13
CHAPTER

ESSENTIALS OF LPC
PROGRAMMING

(ON LPINUDs)

Apprentice, wizard, and elder wizard—all are classic LPMUD titles for

individuals who belong to a select group within a particular MUD.

While the means by which one gains this status, as well as the title that

goes with the status, may vary from MUD to MUD, the basic under-

lying concept remains the same: you are expected to contribute

something to the game for the pleasure of both those who play the

game and those who make it possible.

The duties of an apprentice usually involve two things: 1) learning his

or her new place within the game, and 2) producing a Castle for

players to roam. So where does one start?

Forces that are invisible to the eyes of players are set in motion the

moment a player becomes an apprentice. On the hard disk where the

MUD’s data is stored, a subdirectory is created for the new apprentice.

In addition, the new apprentice gains some commands that players do

not have. On older MUDs, the apprentice may have to log out and

then log back in to receive these benefits, while on newer MUDs, he

or she may simply have to type su or do nothing at all.

220 Part IIl_ © MUD Programming Guide

1DODDHOGGHHGHSH OOH OHGHHHG SG VIVGVGHGHBDIVVISOSIG

Any time | indicate that one should enter something, whatever is in bold monospace May

be followed by pressing the Return or Enter key (depending on which key the keyboard

has).

Apprentices usually must report to a mentor (often called a sponsor) who has either been

designated as such, or who has willingly accepted an apprentice under his or her wing.

This sponsor, if there is one, is the person to whom you should address questions or bring

problems, should either arise.

Not all LPMUDs allocate sponsors for apprentices. Instead, such MUDs usually group

apprentices and low-level wizards into some kind of hierarchy, with a (hopefully) capable

figurehead at key points within it. If this is the case, questions or problems should be

brought to other wizards within or near the same hierarchical rank that he or she holds.

If no one within those ranks can adequately provide answers, the next level of the

hierarchy should be queried, until a solution is found.

At the very beginning an apprentice should not worry about his or her directory and

should concentrate instead on his or her new set of commands. This is important because

the commands are they keys to moving within the MUD’s environment.

New Commands
The commands gained by new apprentices are fairly standard across all LPMUDs as they

are the means by which apprentices make their contribution to the game. Some MUDs

may provide more commands than are discussed in this section. Any unaddressed

commands you gain are extra embellishments that some thoughtful person saw fit to add

to make the lives of all easier on the MUD on which he or she codes.

As you know from having experienced the player’s perspective of a MUD, the commands

one issues toa MUD sometimes expect arguments or parameters. Also, as you have already

seen, the order of arguments is important. In addition, the type of argument is just as

important. Consider the following command:

tell Tarod Weren't you a God somewhere?

The command tell expects two arguments. The first argument is expected to be the

player’s name to which you want to tell (Tarod) while the second argument is expected

to be what you want to tell the player (Weren't you a God somewhere?).

Similarly, apprentice commands expect arguments. You need to be aware, however, that

the type of arguments becomes more relevant for apprentices. Some arguments should be
strings while others should be integers or objects.

So what’s a string? Simply put, a string is a group of alphanumeric symbols, commonly

called characters. What’s an integer? An integer is a whole number. Integers can be negative,

positive, or even zero. What's an object? This is perhaps the most difficult type to grasp,

Chapter 13 e¢ Essentials of LPC Programming (on LPMUDs) 221
OBOOS QOS ODOGHOGOOOSVOHGHGHOHHOHLIHHHHOHHHOOHHOOO QQ

as an object can be anything in the game that has been given definition as an object.

Examples of common objects are players, monsters, weapons, armor, treasure, and

torches.

Now that you know what type of arguments can be expected by apprentice commands,

it’s time to find out what the common commands are, how many arguments they expect,

the order in which the arguments should be given, and what type each argument

should be.

Environment Commands
Apprentices are given a wider range of freedom than are players, when it comes to

expressing themselves online. Certain commands that seem harmless can be put to good

use by players to cheat at the game, thus, such commands are reserved for the coders,

knowing that the coders no longer play the game and have no reason to abuse the

freedom. Apprentices also havea lot more to keep track of (regarding a MUD), than players

do. Some common commands that allow more freedom of expression enable apprentices

to keep track of things relevant within a MUD, and enhance a coder’s communication

capabilities are covered here.

earmuffs
While some MUDs allow players to have earmuffs, most don’t. earmuffs isa command that

allows you to ignore shouts on a MUD. On some MUDs, earmuffs is either on or off. For

this type of earmuffs command, a single string argument consisting of the word on or of f

should be supplied to turn earmuffs on or off, respectively. Most MUDs, however, have

evolved beyond this and allow earmuffs to be set to a specific level whose integer value

cannot exceed your level as an apprentice. When set to an integer value, earmuffs screen

out all shouts from players whose level is less than the specified level.

To turn on this type of earmuffs, invoke the command with a single integer argument

whose value is greater than @ and less than or equal to your level. If you specify an integer

argument whose value is greater than your level, the argument will default to equal your

level. Turning off this type of earmuffs varies from MUD to MUD. Typically, the command

is invoked with a single integer argument of 0 or -1 to turn off earmuffs. More advanced

MUDs enable you to turn off earmuffs by issuing a single string argument consisting of the

word off. Invoking either type of earmuffs command with no argument will tell you the

status of your earmuffs (for the first type of earmuffs, either on or off; for the second type
of earmuffs, what level earmuffs is set to). The following examples are typel earmuffs:

earmuffs

earmuffs on

earmuffs off

222 Part II] ¢ MUD Programming Guide
G©9QOOOHHHHHGH 909 SHH GID OVO PSOSBOSBSBVOSO'

The following are type2 earmuffs:

earmuffs

earmuffs 25

earmuffs 0

earmuffs -1

earmuffs off

Concerning the preceding example of type2 earmuffs, | assume for the sake of example

that the wizard level of the apprentice is 25.

echo
echo is a command akin to emote. echo expects a string argument that can be anything.

When invoked, echo prints the specified argument to all players in the room with you. This

command is useful in conjunction with emote, as it does not prepend your name to the

argument like emote does. Following is an example:

echo The grass withers and dies around Wolvesbane's feet.

echoall
echoall is an expansion of the echo command. echoall, too, expects a string argument that

can be anything. Where echoall differs from echo is in its output. Where echo prints to all

players in the room with you, echoa1ll prints to all players on the MUD! Your name, as with

echo, is not prepended to the string. Many MUDs do not allow apprentices to have this

command immediately, as it can be annoying if overused. Following is an example:

echoall A cold feeling of uneasiness settles about you.

localcmd
localcmd scans you, everything you have, and the room in which you can be found to

determine all the commands you can invoke. The command takes no arguments and will,

upon invocation, print a list of the commands you can use.

people
The people command prints a list of facts about every player, much as a who list does. It takes

no arguments and outputs the following information (about each user) to your screen in
a columnized form:

@ The IP/ADDRESS from which a user is connected

@ The user’s name, level, and age

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 223
©QQDVSPSOOHGHOVHHGSHHGHHOIHHHHHOGHOOOHHOHOHOHHHOOOHOOGE we

@ Whether the user is idle

@ The path of user’s current room

The information is columnized from left to right, and is preceded by a header that yields
the following:

@ The total number of users

@ How many of those users are active

@ How many commands per second are being executed (averaged over the last 15

minutes)

@ How many lines per second have compiled (averaged over the last 15 minutes)

The following is an example of typical output from the people command.

There are now 43 players(41 active). 10.46 cmds/s, 2.68 comp lines/s

128.174.5.60 Tarod 10001 96 D ~ta-od/workroom
140.253.3.40 Syren 700 88 D room/root/board_room

192.100.81.121 Sonja 150 36 D room/root/board_room
128.123.34.5 Bud 36 24 D ~animal/light/light4
138.202.30.25 Hangman 35 37 D ~animal/light/light4
TOO woes. 4, Iceshadow 33 7 10) ~animal/houses/house

Iipii4 ies. Sturm 33 14 D ~syren/castle/doom_c
128.206.115.39 Ravana 33 18 D guild/thief/thief_gu
NOSES ala Tea Librarius 30 8 D ~quest/entrance/room

129.63.152.2 Lure 28 ann) guild/monk/rooms/mon

Seiten Fal oh Droopy 25 10 D guild/thief/room/fen

128.169.202.68 Carnivor 24 12 D ~craysus/tower/goodr
142.150.1.22 Aurora 23 (3]B) ~ambar/kelamor/room9
137.229.10.33 Milk 21 6 D ~maeglin/minas_tirit

128.95,.136.13 Flavius 20 9D ~gor/castle/5
Uehara 1 Bobble 20 2D) ~syren/castle/doom_c
137.229.10.33 Krink 20 wf 2) guild/monk/rooms/mon

128.123.34.14 Belgarion 19 4 D ~maelik/masyria/sour

TSG tiene Basil 18 6 D ~craysus/tower/goodr

155.238.33.183 Carmen 18 9D guild/druid/druid_gu
198.3.127.1 Lz 18 9 D ~craysus/tower/good1

193.190.1.55 Marcus ilY/ 5 D ~jaymz/cave/cave3

P35 aitAaschac Estios 17 Sa) ~syren/castle/hfores
140.247.79.71 Corman WZ 2a) ~ambar/kelamor/room7

193.190.1.46 Gorby 16 4 D ~gor/plains/dark
15S p2o0u OG Kelemvor 16 nal) guild/monster/rooms/

150.203.66.218 Kiri 16 fd 0) ~jaymz/cave/caves3

193.190.1.22 Carnaval 14 Zed room/root/vill_road2
193.190.1.63 Morgana 12 ®@ D ~sensual/xtalcaves/R

UBOe 19s 4 Jenga ie 13 h I guild/monk/monk_guil

t29) 637 152.2 Sutek 2 11h room/root/board_room
129.186.148.21 Ged 12 |i) ~quest/tyrsis/iw9
142.150.1.22 Kiger 11 8 hI guild/fighter/fighte
140.142.63.4 Hardcore 11 10 h ~heart/castle/guards

130.253: 1.13 Arianna ih if 712) ~animal/houses/house
192.100.81.126 Elghinn 11 18 h ~sensual/xtalcaves/R

128.8.70.8 Shmoove 10 i) 2) ~taran/room/entrance

[kekstaA(erei oye Jaden 8 By nt ~gor/hole/hall4

165.113.1.40 Ondska 8 13h ~sensual/xtalcaves/R

kde TAY eH ei Bacho 8 10 h ~gor/hole/hall4

224 Part II] © MUD Programming Guide
DOOD HDOGOGGHHHHDHDWLQOHGHGSHHVSVWEGOH

128.169.202.68 Chira 7 5h ~hulk/newbie/ghost_e

36.8.0.62 Ezekiel 6 ai guild/monster/rooms/
150.216.1.239 Tiny 6 6 4h guild/fighter/fighte

8

WIZ

The wiz command is just like a shout command that shouts only to other wizards. It takes

a string argument that is anything you would care to say to all the wizards who are logged

on. Following is an example:

wiz Has anyone seen my sponsor?

6 @

wizlist
The wizlist command has been around for along time on LPMUDs. It was added to enable

MUD Gods to keep track of which castles were popular with players and to help the Gods

find out why. Originally, being a wizard was a game in itself. Wizards earned points for

use of their area and were supposed to be awarded rank based on these points. However,

this mode of thinking in LPMUDs is long outdated.

A wizard gets one point for every command he or she has defined when it is used by a

player. When a wizard uses commands defined by his or her objects, he or she gets points

for that, as well. The score decays by one percent every reset, and is saved and restored

from a file when the game is rebooted. If there are many wizards on a MUD, not all wizlist

data is printed. If a wizard does not appear on the list, you can invoke wizlist with a single

string argument that should be the name of the player whose score you want to see.

wizlist output is columnized to provide the following information:

@ Score of a wizard’s castle

@ Score percentage of the total

@ Rank sorted by castle score

@ Total number of evaluated nodes

@ Total number of heartbeats

@ Total number of indices used in arrays by the wizard’s files.

The following is and example of typical output from the wizlist command.

Wizard Points % Rank Eval'd Nodes HrtBts Indices

sboe 908 0% (23) [2010k, 3412] 53674 479

dyv 1122 0% (22) [668k, 2438] 231343 226

tarod 1442 0% (21) [568k, 1004} 555671 200

aviar 3522 @% (20) [1472k, 4467] 161518 232

megadeth 3524 0% (19) [2488k, 3797] 2028522 1918

quest 5141 0% (15) [2807k, 22253] 715688 1068

ted 6728 0% (14) [3037k, 3261] 356952 1251

barbie 7633 0% (13) [1735k, 3540] -2091785 1193

Chapter 13 © Essentials of LPC Programming (on LPMUDs) 225
Oe 2S OSSSSPOSSS SOOO OS9SHOCOOBOHOOOOOOOOOOE

BE 3 © O¢

heart 9502 0% (12) [3598k,11281] 1355310 460
jaymz 13877 0% (11) [7596k,12793] 2378966 1312
huma 14029 0% (10) [1739k, Q) -1653 39
syren 14042 @% (9) [12456k,28344] 7447407 3619
craysus 14601 1% (8) [6841k,10636] 2834291 1448
omega 15373 1% (7) [8305k,23106] 5963098 2146
taran 20688 1% (6) [6343k,12998] 797487 465
maelik 26909 1% (5) [19313k,27846] 11965557 45165
gor 33672 2% (4) [24908k,99072] 2797208 4478
ambar 41764 2% (3) [20243k,62073] 12942656 3805
maeglin 47374 3% (2) [9713k,13365] 8831847 2969
animal 1113832 78% (1) [660309k,14933] -1180178 36129

Totals: 1410040 (64)

Movement Commands
Apprentices and their ilk don’t walk around very often in MUDs—they have better things
to do than spend 30 seconds walking to meet someone, get somewhere, or acquire
something. There are three commands typically provided in order to make a coder’s life
easier.

goto
goto is acommand that takes one argument and expects that argument to be a string. The

string usually can be either a player’s name or the full path of a room. The first form of

goto, which uses a player’s name, is the more commonly used, as in the following
examples:

goto shadowlor

goto /room/church

The first example will, if Shadowlor is logged in, move you to the room in which

Shadowlor can be found. If Shadowlor is not logged in, goto will tell you that it could not

find him. The second example will, if /room/church exists, move you directly to it.

This movement has the effect of teleporting. You will cease to be where you previously

were and reappear in the new location you specified, assuming all goes well.

trans

trans isa command that takes one argument and expects that argument to bea string. The

string must be a player’s name, as in the following example:

trans babrius

If Babrius is logged in, the preceding example would cause Babrius to be transported to

your current location. If the game cannot locate Babrius, then nothing will happen and
trans will notify you that it could not find Babrius.

226 Part Ill © MUD Programming Guide

DDODLOOOHHHHHHDVOGOHHOHHHD 9 OVO HGSHD FB 9 VSVBDO9S9SE

This movement has the effect of teleporting. Babrius will cease to be where he previously

was and will reappear in your current location, assuming all goes well.

home
home is a command that takes no arguments. Simply type it and press Enter, as in the

following example:

home

Invoking the hone command moves you to your workroom. You must have a file called

workroom.c in your personal directory for this to work properly.

File System Commands
File system commands are perhaps the most important commands for apprentices. While

movement commands save you time, file system commands are those commands that

enable you to move around the MUD’s subdirectories and look directly that what is

contained therein.

cat
cat isa command that takes one argument and expects that argument to be a string. The

string can be either the name ofa file or the full path of a file, as in the following examples:

cat workroom.c

cat /players/bleys/workroom.c

If, as in the first example, only a file’s name is given, the file will be searched for in the

current directory and, if found, the contents of the file will be printed to the screen. If, as

per the second example, a full path is specified, cat will attempt to print the contents of

the file specified. If the file does not exist or you do not have permission to read the file,

cat will inform you that it was not able to complete its task.

If the file is large, characters beyond a certain point generally will be lost or the file will

ii be truncated prior to this break point. This has to do with the way the game sends the

N ' file’s contents to the screen. As a result, cat is not a good way to view files unless the files
are small.

cd
The cd command stands for change directory. It takes a single string argument, in one of

several forms, and usually defaults to changing to your own subdirectory if no argument

is supplied, as in the following examples:

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 227
BOLD DQSOSGGHHOHHYIGHGHGHH OOH OHGHOHOS OOOO ONHHGHHOOOOOOOE

The first example changes the directory with you are working to /1og. The second example

searches the directory in which you’re working (/1og if you do it immediately after the first

example) fora subdirectory called oLp and, if found, makes it become your current working

directory. The third example moves you one directory up in the directory chain (meaning

your directory goes from /1log/OLD to /log again if you are doing these examples

sequentially). The fourth example takes you to your personal directory (known as a home

directory) exactly as if you had typed cd without an argument.

The following uses the preceding examples.

> cd /log
cwd: /1log/
> cd OLD

cwd: /1log/OLD/
me Caters

cwd: /log/

cwd: /players/bleys/

The ~ (tilde) usually is unsupported on older MUDs. Due to the existence of globally

accepted standards within the MUD community, when the tilde is supported, it will

always carry the meaning of “home directory” when used with file system commands.

cp
cp is the equivalent of the DOS copy command and the UNIX cp command. It expects two

arguments that are both strings. The strings can either be file names or full pathnames of

files. If the tilde is supported, you can use it in either the first argument, the second

argument, or both arguments. If the first argument supplied (the file you want to copy)

cannot be located, or you do not have permission to read it, cp will inform you that it could

not find what you told it to copy and, as a result, will do nothing. cp usually does not allow

you to overwrite a file that already exists. On some MUDs, however, where cp has been

given the capability to overwrite an existing file, the command will prompt you, asking

if you want to overwrite a file or not. Just as cp does not allow you copy a file you are not

authorized to read, it does not permit you to copy a file to a directory to which you do not

have write access. The following are examples of using cp.

cp /players/bleys/workroom.c /players/bleys/test.c

cp ~/test.c ~/testi.c

cp testi.c /players/bleys/test2.c

ep test2.c test3.c

228 Part Ill ¢ MUD Programming Guide

DGDODOOOOHHGHHIS OOOPHHGHHDI VOWS PSPS BB VIVISGOOVSE

The first example illustrates the use of cp with full paths given as arguments. The second

example illustrates the use of the tilde in both arguments, while the third example

illustrates the use of a filename as the first argument and a path as the second argument.

The fourth example illustrates the use of filenames as both arguments.

The following uses the preceding cp examples. I ca’d (with no argument) first to get into

my home directory for this example.

> cd
cwd: /players/bleys/

> cp /players/bleys/workroom.c /players/bleys/test.c
cp: /players/bleys/workroom.c copied to /players/bleys/test.c

> cp ~/test.c ~—/testi.c
cp: /players/bleys/test.c copied to /players/bleys/test1.c

> cp testi.c /players/bleys/test2.c
cp: testi.c copied to /players/bleys/test2.c

> cp test2.c test3.c
cp: test2.c copied to test3.c

When using full paths, you can leave off the filename (the last part in a full path) in the

second argument. If you do this, cp checks to make sure that the path you give exists and

is a directory and, if it is, copies the file specified by the first argument into the directory

indicated by the second argument. You can do this when using a filename as the second

argument, as well. Simply specify a subdirectory (whose location is within your current

working directory) rather than a filename for the second argument. The cp command

checks to make sure the second argument exists and is a directory and then copies the

file into the directory if both checks return true. If supported, you can use the tilde for

this application of cp, as well.

The following are examples of how to use cp to copy files into a subdirectory without

specifying the destination filename:

cp workroom.c /players/bleys/NEWDIR

cp test1.c NEWDIR

Assuming that you are in your home directory and a subdirectory, NEWDIR, exists within

it, the first example will copy workroom.c into NEWDIR, retaining the name of the first

argument. The second example will copy test1.c into NEWDIR, as well. Again, the

filename will be retained.

The following uses the preceding examples. I cd’d (with no argument) first to get into my

home directory for this screen shot. I then invoked mkdir (covered later) to make a

directory.

> cd

cwd: /players/bleys/
> mkdir NEWDIR

mkdir: created directory 'NEWDIR'

> cp workroom.c /players/bleys/NEWDIR
cp: workroom.c copied to players/bleys/NEWDIR/workroom.c

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 229
BOYSS9SGSOHGHSOLHDSHHSOHHO9YVHHGHHHOOOHHHHOOHOOOOOOOE

> cp test1.c NEWDIR

cp: test1.c copied to NEWDIR/testi.c

Is
To get a list of files within a directory, you invoke the 1s command. It accepts a single string
argument that should be the directory path you want to list and usually defaults to listing
the contents of the current working directory if no argument is supplied. On MUDs where
the tilde is supported, it can be applied. Most LPMUD 1s commands display the total
number of blocks the files in a directory use on the MUD’s hard disk. In addition, the
number of blocks each file uses up is displayed next to the file’s name. A block is 1024
bytes, which is the equivalent to 1KB of space used. The following are examples using 1s.

ls

ls ~/NEWDIR

The first example yields a list of the contents of your current working directory. The

second example lists the contents of NeworR, a subdirectory within your home directory.

The following uses the preceding examples. I ca’d (with no argument) first to get into my
home directory.

> cd

cwd: /players/bleys/
>was

/players/bleys:
Total 56

1 NEWDIR/ iievestiec 11) eStS..C

EC Sienc 11 test2.c 11 workroom.c

> ls ~/NEWDIR

/players/bleys/NEWDIR:
Total 22

A test lnc 11 workroom.c

mkdir
The mkdir command creates a new directory. It expects a single string argument that can

be either a name for the new directory or the full path of the new directory. If the new

directory you specify already exists as a file or a directory, mkdir will be unable to complete

its task and will inform you of the problem. In addition, you cannot use mkdir to create

directories in places where you do not have permission to write, because creating a

directory requires writing to the hard disk. On LPMUDs where the tilde is supported, you

can apply the tilde when using a path for the mkdir command. The following are examples
of using mkdir.

mkdir NEWDIR

mkdir NEWDIR/testing

The first example makes a new directory, NEwoIR, in your current working directory. The
second example creates a new directory, testing, in NEWDIR.

230 Part II] ¢ MUD Programming Guide

DGOHOHOOOHOHGHGHHHVDVOHDHDOGHGHY VOWS PD GOPDIDIIDPSISOHIS’

more

The more command is an interactive extension of the cat command. As more is very MUD-

specific, the way it works varies to a great degree. It is used primarily for reading files

without editing them. more expects a single string argument that usually can bea filename

or the full path of a file. You can use the tilde where applicable. more prints a full screen

of text from the specified file to your screen and waits for input. The input varies from

MUD to MUD so only the basics are covered, which consist of pressing Enter or entering

q and then pressing Enter. When a screen of information is displayed, more pauses and

waits for you to tell it what to do next. Pressing Enter prints the next screen of text from

the file. Typing q and pressing Enter discontinues use of more and returns you to your

normal prompt.

mv

nv is the equivalent of the DOS move command and the UNIX mv command. It expects two

arguments that are both strings. The strings can either be filenames or full pathnames of

files. If the tilde is supported, you can use it in either the first argument, the second

argument, or both arguments. If the first argument supplied (the file you want to move)

cannot be located or you do not have permission to read it, mv will inform you that it could

not find what you told it to move and, asa result, will do nothing. mv usually does not allow

you to overwrite a file that already exists. On some MUDs, where my has been given the

capability to overwrite an existing file, the command will prompt you, asking whether

you want to overwrite a file. Just as mv does not allow you to move a file that you are not

authorized to read, it does not permit you to move a file to a directory to which you do

not have write access. You can use the tilde where it is supported, and you can use it when

specifying paths, if applicable.

When you use mv, unlike cp, no copy of the file is left behind. Thus, you can use mv to

rename a file in a directory—think of it as moving a file from one name to another. Its most

common use, however, is in moving a file from one directory to another. Following are

some examples of mv:

mv /players/bleys/test.c /players/bleys/mvtest.c

mv ~/testi.c ~/mvtest1.c

mv test2.c /players/bleys/mvtest2.c

mv test3.c mvtest3.c

The first example illustrates the use of mv with full paths given as arguments. The second

example illustrates the use of the tilde in both arguments, while the third example

illustrates the use of a filename as the first argument and a path as the second argument.

The fourth argument illustrates the use of filenames as both arguments.

The following shows a screen of the preceding examples. I cd’d (with no argument) first

to get into my home directory for this screen shot.

eke

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs)

caf GH os

> cd

cwd: /players/bleys/

> mv /players/bleys/test.c /players/bleys/mvtest.c
mv: /players/bleys/test.c moved to /players/bleys/mvtest.c
> mv ~/test1.c ~/mvtesti.c

mv: /players/bleys/test1.c moved to /players/bleys/mvtest1.c
> mv test2.c /players/bleys/mvtest2.c
mv: test2.c moved to /players/bleys/mvtest2.c
> mv test3.c mvtest3.c

mv: test3.c moved to mvtest3.c

When using full paths, the filename (the last part in a full path) can be left off in the second
argument. If this is done, mv checks to make sure that the given path exists and is a

directory and, if it is, moves the file specified by the first argument into the directory

indicated by the second argument. This can be done when using a filename as the second

argument, as well. Simply specify a subdirectory (whose location is within your current

working directory) instead of a filename for the second argument. The mv command will

check to make sure the second argument exists and is a directory and will move the file

into the directory if both checks return true. If supported, the tilde can be used for this

application of mv, as well. On some MUDs, if mv is told to move a file to a directory that
does not exist, you will be prompted to indicate if you want the directory created.

The following are examples of how to use mv to move files into a subdirectory without
specifying the destination filename.

mv mvtest.c /players/bleys/NEWDIR

mv mvtest1.c NEWDIR

Assuming that you are in your home directory and a subdirectory, NewoIR, exists within

it, the first example moves mvtest.c into NEWDIR, retaining the name of the first argument.

The second example moves test1.c into NEWDIR, as well. Again, the filename will be

retained.

The following is a screen of the preceding examples. I ca’d (with no argument) first to get

into my home directory for this screen shot. linvoked mkdir in a previous example to make

a directory NEwo1r, which already exists, as a result.

> cd
cwd: /players/bleys/

> mv mvtest.c /players/bleys/NEWDIR

mv: mvtest.c moved to players/bleys/NEWDIR/mvtest.c
> mv mvtest1.c NEWDIR

mv: mvtest1.c moved to NEWDIR/mvtest1.c

On some MUDs, you can use the mv command to move one directory name to another

(that is, rename a directory). You accomplish this the same way you move a file.

231
2 SOS SSSGOSS GSS 9OSOSGO009 9990000000 800E

232 Part Ill © MUD Programming Guide

1DDGWOSHHOHHHHDOOLOGHHGHPHDDD SOS VS HGOHF BS BOS VSGIPISOVSO'

pwd
The pwd command stands for print working directory. pwd takes no arguments and simply

displays your current working directory, when invoked. This command is useful for times

when you manage to forget which directory you are working in, perhaps because the

phone rang, or you were simply skimming rapidly through directories.

rm

rm is the DOS equivalent of the DEL command and the UNIX rm command. You use rm to

remove files. It expects a single string argument that can be either a filename ora full path.

If the tilde is supported and is applicable, you can use it. When invoked with a filename

for an argument, rm searches for the file in the current working directory and removes it,

provided that it exists and you have permission to write to it. If a path is specified as an

argument, rm scans the specified path for the file to remove and removes it if, again, it

exists and you have the appropriate permission. Following are examples of the rm

command.

rm mvtest2.c

rm ~/mvtest3.c

The first example removes mvtest2.c from your current working directory if it exists. The

second example removes mvtest3.c from your home directory.

rmdir
The rmdir command is mkdir’s counterpart. You use it to remove a directory. It expects a

single string argument that can be either the name of the new directory or the full path

of the directory. If the directory you specify does not exist or isn’t a directory (that is, it’s

a file) rmdir will be unable to complete its task and will inform you of the problem. In

addition, you cannot use rmdir to remove directories you do not have permission to write

to because removing a directory requires writing to the hard disk. On LPMUDs where the

tilde is supported, you can apply it when using a path for the rmdir command. Finally,

rmdir will not remove a directory that is not empty. Before you can rmdir a directory, you

must rm or mv all the files within it to a new location. Following are examples of the rmdir

command.

rmdir NEWDIR

rmdir NEWDIR/testing

The first example removes the directory, NEWDIR, in your current working directory, if

NEWDIR exists. The second example removes the directory, testing, in NEWDIR.

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 233
DOOlOODOOSHG OH VOD WOGHOHOS QOS VHOGHHHOOOVOGHHOHOHOQOSOOE

e

tail
The tail command is cat’s counterpart. Tail takes one argument and expects it to be a
string. The string can be either the name of a file or the full path of a file. When invoked,
tail prints the last 20 lines of the specified file. Following are examples of the tail
command.

tail workroom.c

tail /players/bleys/workroom.c

If, as in the first example, only a file’s name is given, the file will be searched for in the
current directory and, if found, the last 20 lines of the file will be printed to the screen.
If, as per the second example, a full path is specified, tail will attempt to print last 20 lines
of the file specified. If the file does not exist or you do not have permission to read the file,
tail will inform you that it was not able to complete its task.

How many lines tail will print to your screen is based solely on the discretion of the
maintainers of aMUD. On some MUDs tail will print more than 20 lines, on others, less.
However, the number of lines that tail prints can be expected to constant for a particular
MUD. Twenty lines is merely the typical default.

Object Manipulation Commands
A number of commands are provided to enable you to manipulate objects. While files,

manipulated by file system commands, are concrete things that exist on a hard disk,

objects are not. Objects exist in the computer’s memory, unless they have been swapped

to hard disk to free up space for more objects. Thus, in order to manipulate objects, a

special command set must exist. These are the commands that allow you to load an object

from a file, copy it, update it, and even destroy it.

clone
clone expects a single string argument that can be a filename or a full path. The use of the

tilde is permissible where applicable, if supported. The file to be cloned MUST end in .c

for clone to work properly. If the object defined by the specified file is not currently loaded,

on most MUDs, it will be loaded automatically upon invoking the clone command. clone

ensures that the specified file is loaded into memory, after which a new copy of the object

will be created, reset, and moved to either your inventory or to the room you are in,

depending on the value returned by the function get(). Following is an example of the
clone command.

Clone /obj/torch.c

234 Part Ill © MUD Programming Guide

DDO®DOOOOHHHHGDVOGHOHHHH VD 9 OOOH HHS GBB BOVDHVSISVBBOOO'

The preceding example clones the object defined by the file /obj/torch.c and moves it into

your inventory. If you clone something that cannot be picked up, such as a bulletin board,

it will be moved to the room in which you are located, rather than your personal

inventory.

ay Rooms and castles should never be cloned; they should always exist singly to avoid

NOTE wasting the MUD’s finite memory.

dest
dest, short for “destruct,” expects a single string argument that is an object’s name. The

object must be located either on your person orin the room with you for it to be destroyed.

If the object to be destroyed is a cloned object, the memory-resident copy will continue

to remain loaded. If, however, the object is a singular object (an uncloned object, such as

a castle), then all data about the object will be discarded upon successful destruction of

the object. An update of a singular object will have the same effect as desting it. Following

are examples of the dest command.

dest torch

dest /obj/torch#8026

The dest command on many MUDs will also accept a single string argument that is a full

path without the .c extension of the filename, to which an object number is appended.

The need for this arises only when an object that has no name (due to a bug in the object's

code, perhaps) must be destroyed. The object number of the object you want to dest

must be known. Ask your sponsor or a wizard of higher level than you for information

regarding this, should the need arise.

load
The load command expects a single string argument that can be a filename or a full path.

When supported, the tilde may be used, if appropriate. The file to be loaded must end in

.c for load to work properly. If the object defined by the specified file is already loaded into

memory, nothing will happen. If not, the object is then loaded as requested, and reset ()

is called in the object. Following is an example of the load command:

load ~/workroom.c

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 235
9BGDOO®®BOGSGE OOOH HDHOHHGGHOOOO HOOGOHSOOOHOHHHOHHOOOOOOE

update
The update command expects a single string argument that can be either a filename or a
full path. The tilde may be used where appropriate, if supported. update destroys (as per
dest) the memory-resident image of the loaded copy of the specified file and replaces it
with a brand-new image loaded (as per load) from the specified file. If changes have been
made to the specified file and it has since been updated, all new clones will behave
according to the new memory-resident image, while clones made prior to invocation of
the update command will continue to behave as per the code loaded into the previous
memory-resident image. Following is an example of the update command:

update workroom.c

Updating a singularly existing object (like a castle or a room) has the effect of destroying
and reloading it. Older MUDs also destroy anything (including players, wizards, items,
and so on) that happens to be within the room when updated. More modern MUDs,
however, will transport everything from the room before proceeding with the dest
portion of the update procedure and, upon loading the new image, will transport
everything back to the room.

Special Commands
There are two commands that need special attention, these being ed and man. While ed is

supported on every LPMUD, man may not be. Both commands require knowledge of

additional information. In ed’s case, there is a set of commands internal to ed itself. In the

case of man, the argument that must be supplied is the name of a function. A list of

functions when discussing man is provided for your use, as not all LPMUDs are kind enough
to do so.

ed
The ed command is used to edit files. ed expects a single string argument that can be a

filename or a full path. You may use the tilde if it is applicable and it is supported. Once

invoked, ed’s subcommands must be used to perform any necessary modifications to the

specified file. As ed is a line editor, simply entering a line’s number at the ed prompt

(usually a colon, :) will take you to that line. Entering the = displays that line’s number.
Entering $ (called string), will take you to the last line of the file.

Table 13.1 lists all the common ed subcommands and their uses.

236 Part Ill MUD Programming Guide

DOQQ WOOO HDOHHHYDOOHOD OHHH VSI BV VIOVPOGHID BOPP BSBIVVSE

Table 13.1. Common ed subcommands.

Command Description

/ Searches from line 1 to the last line for a pattern.

? Searches backward from the last line to line 1 for a pattern.

= Shows the current line’s number.

a Appends inputted text starting after the current line. When

inputting text, entering a period, ., on a new line terminates input

mode and returns you to the ed prompt.

c Overwrites the current line with inputted text. When inputting

text, entering a period, ., on a new line terminates input mode

and returns you to the ed prompt.

d Deletes specified line(s). If no lines are specified, d defaults to

deleting the current line.

h Displays help on ed subcommands.

. Inserts inputted text starting before the current line. When

inputting text, entering a period, ., on a new line terminates input

mode and returns you to the ed prompt.

I Indents the entire file’s code.

13 Joins specified lines together (in this case, lines 1 through 3).

n Toggles on or off the line number display.

1,$p Prints specified lines (in this case, lines 1 through the last line). If

no range (such as 1,3 and so on) is specified, p defaults to printing

the current line to your screen.

q Quits ed. The file must be unmodified or have been saved to quit

ed using this subcommand.

Q Quits ed even if the file is file modified and unsaved.

pene Reads a file fi into the editorand appends its text at the end of the

current file. You must specify the full path when indicating a file

to read in and append.

1,$s Searches and replaces through specified lines (in this case, lines 1

through the last line). You must specify what you want to look for

and what you want to replace it with. The form of specification

looks like RangeBegin, RangeEnds/FindMe/ReplaceWith.

1,$s/reset/create, for example, replaces the first instance of reset,

between the first and last lines, with create. If you wanted to

replace every instance or reset with create, you would use 1,$s/
reset/create/g (the /g means global).

Saves current file and quits ed.

Displays 20 lines forward. If z- is specified, 20 lines backward will

be displayed to your screen, instead.

Chapter 13 © Essentials of LPC Programming (on LPMUDs) 237
SOLVERS 28 OSHSGHOLGO989GHOSOHOO899OO0DGSOOODOOOO

Command Description

Z Displays 40 lines forward. If z- is specified, 40 lines backward will
be displayed to your screen, instead.

man

The man command stands for manual. It expects a single string argument that consists of the
name of a function. When invoked, man will print to your screen information concerning
the proper syntax and usage of the specified function. On some MUDs, man will yield a list
of functions for which it can yield information.

Following is a list, arranged alphabetically, of functions normally supported on LPMUDs.

Commonly Available Manual Topics

add_action, add_xverb, all_inventory, allocate, atoi

break_string

call_other, call_out, call_out_info, caller, can_put_and_get,

capitalize, cat, catch, catch_tell, clear_bit, clone object, commands,

cp, create, create Wizard, creator, crypt, ctime

deep_inventory, destruct, disable commands, drop

enable_commands, environment, exec, exit, explode, extract

file name, file size, file time, filter_objects, find_call_out,

find_living, find_object, find_player, first_inventory, function exists

gety get dir, get _localemd, grab file

heart_beat

id, implode, index, inherit_list, init, input_to, interactive, intp

living, log file, long, lower_case, ls

map_array, member_array, mkdir, move_object

next_inventory, notify fail

object_time, objectp

pointerp, present, previous_object, process_string, process value

query_attack, query_auto_load, query_host_name, query_idle,

query_ip_name, query_ip_ number, query_level, query_load average,

query_name, query_prevent_shadow, query snoop, query verb

random, read_ bytes, read_file, remove call out, rename, reset,

restore object, rm, rmdir

save object, say, set_bit, set_heart_beat, set_light, shadow,

short, shout, sizeof, slice_array, sscanf, stringp, strlen

238 Part Ill © MUD Programming Guide

GHOHHOHOOGHHHHHHVDOOHOHGSIIVVOOPHGHOIIVVWSVHE

tails tell object, tell snoomy, teste bit, this interactive, this object,

this player, time

unique_array, users

write, write bytes, write_file

Castle Creation
So far you have been exposed to commands that enable you to affect your environment

more readily than players can. In addition, you now have the ability to move more freely

and know more about the structure of the game than any player might. These tools give

you the power to create the “magic” that players see when they wander through an area

in search of fun.

You have been granted these things but not without responsibilities that go hand in hand

with them. Your primary duty is contribute to the game. Apprentice contributions usually

take the form of game land, known to old school MUDders and coders as castles. A castle

is simply an area that a wizard has built and maintains. Every MUD differs on its castle

policies. Restrictions are typically placed on how much experience can be given out for

a monster, how much money and/or treasure the monster may have, what kind of quests

you may build (if any), and so on.

The restrictions just mentioned usually are dependent on the wills of the elders and gods

of a MUD. Those specifics are not addressed in this book; however, note that it is your

responsibility to learn, know, and adhere to the MUD’s guidelines concerning areas/

castles. More than likely, you have a sponsor to whom you can look for guidance. Ask your

sponsor (if you don’t have one, ask an elder wizard) where the guidelines for castle

creation can be found, and then take the time to read them.

Originality is important. Many coders in days past have generated areas based on the

content of fantasy or sci-fi books that they have read. While this is a fine contribution to

the game, it does not demonstrate original, creative thinking. Consider a player who hops

from MUD to MUD, sampling what each has to offer. Many times, he or she will go from

one MUD to another and find similar castles as a result of some coder who did not have

a mind of his or her own. I strongly suggest that once you have some idea of how the code

works, you sit down with some graph paper and map out what your castle looks like, using

one block for each room. Multiple levels are encouraged.

Realism plays an important part in creating an area, as well. How many times, as a player,

did you walk into a room that had a well-written description that contained things you

could not pay closer attention to or handle? It is recommended that any time you write

a description, you make it possible to look at or manipulate every noun within said

description. While this makes your coding more complicated, it also makes the game
more vibrant and physical.

Chapter
gs
WP

13. ¢ Essentials of LPC Programming (on LPMUDs) 239
2ODOGOLOODHOGHHHHVOVIIHHGHHHHHOVSHHGHHHHOOHVOOE WY Wy

With these things in mind, it’s time to learn how to build a castle. The best place to start

is by learning which game version you are working with and where certain files are located

within that game’s MUDIlib.

Game Version
Every LPMUD is different. From the moment you log on, you see differences in the way

areas are laid out and their descriptions. Commands, too, differ from LPMUD to LPMUD.

Beneath all of the aesthetics there is a programming platform called LPC that controls how
things work. As this platform is developed by hobbyists and enthusiasts, it is always

undergoing revision.

The program that keeps track of everything that occurs on an LPMUD is commonly called

a “game driver.” Without it, there isno game. This program has been around for years now

and has undergone many changes. Some MUDs may be running older copies, while others

are using the newest LPMUD (or compatible) driver available. While backward compat-

ibility has, on the whole, been maintained, there are marked differences.

LPMUD versions 3.0 (or more recent) generally take up less memory and load faster than

older versions. In addition, versions 3.0+ support more variable types and have more

functions than versions 2.4.5 (and older). This does not mean that a MUD running ona

3.0+ driver is better than one running on a version 2.4.5 driver. It simply means that a

MUD running on the 3.0+ driver is better at managing its resources than a MUD running

on a 2.4.5 driver.

The transition point among code differences occurred when version 2.4.5 was still heavily

used in the LPMUD world. Coders were accustomed to writing code using specific

functions and, as a result, when version 3.0 was released, support for 2.4.5 compatibility

was included within it. A 3.0+ driver can be compiled in what is known as native mode,

which is not compatible with all 2.4.5 code, or it can be compiled in compat mode to allow

old-style LPC code to be used.

You need to know which driver version the game you play uses, as this affects how you

must write your code. If you don’t already know the version of the game driver, or you’re

not sure, ask your sponsor or a high level wizard, to be sure. You also might ask the same

individual to make you aware of any MUD-specific features in the driver that you may use.

The MUDLib and File Locations within It
MUDLIib is short for MUD Library. The contents of the MUD’s directory tree is called a

library because much of what is contained therein can be viewed and used by wizards, as

well as the fact that the game itself uses nearly all of it. Files within a MUDLib are akin to

books on the shelves of a library.

240 Part Ill * MUD Programming Guide
1B SSOOlHSOHHOHOOOSHOSHHS DOGO HD HGSHHIDOPOOOGHOSVOS

Home Directories
Every apprentice and wizard has a home directory. This directory is where a coder builds

his or her castle, as well as where any personal files (such as workroom.c) are kept. On

LPMUDs running a 2.4.5 driver or a 3.0 driver in compat mode, home directories usually

are located somewhere beneath /players (/players/bleys, for example). LPMUDs running

a driver that is 3.0 native (or more recent) tend to locate wizard directories under /usr.

Ultimately, where your home directory is located is dependent upon the will of the gods

of a MUD. A simple cd command followed by the pwd command will show you where

it is.

The doc Directory
A specific directory for documentation is generally maintained on each LPMUD. Such

documentation usually is less important than game progress, so expect the documenta-

tion found within to be slightly, if not massively, out-of-date. This is not true on all MUDs,

as some will assign an elder wizard or a small team of them to maintain the directory.

Information regarding wizard rules, wizard commands, castle restrictions, is typically

kept in /doc.

The log Directory
Most LPMUDs maintain logs of events that transpire within the game. These logs are kept

in order to be able to trace potential problems over a period of time. Things that are

commonly logged include bugs reported, experience given, game errors, ideas reported,

logins, logouts, player advancements, player deaths, reboots, shouts, treasure given, and

typos reported. You can find things of this nature in /1og.

The object Directory
Nearly every LPMUD keeps its base objects in /obj. Within /obj can be found the base files

that make the game playable, such as armor.c, container.c, living.c, monster.c, player.c,

weapon.c, and treasure.c.

The open Directory
The /open directory contains files and information to which all wizards, regardless of level,
have access. If all wizards are able to write to this directory, as is the case on some LPMUDs,
the information contained therein is generally unimportant, as anyone could alter it with
ease. If, however, write access to /open is restricted; however, all wizards are permitted to

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 241
DOBQOLVSDPSHGHOHGVO VOD VI GHHGHHO OVD IHGHHGHOHO HOH GHGHHHHHOWVSHHHGHHOOOHOOOE

read what is contained in the directory, and then expected to find relevant examples of

code and tidbits of wizard humor within the directory.

The players Directory
Player files usually are stored in /players. Usually /players will contain subdirectories

named for the letters of the alphabet, under which player filers whose name start with a

specific letter will be stored. For security reasons, you usually are not permitted to read this

directory.

The secure Directory
Nearly all LPMUDs maintain a directory that only high-level wizards may access. Often,

the directory will be called /secure or /closed. Within this directory, you often will find

fragile objects, that is, objects that can be easily broken unless they are handled carefully

while coding. Certain crucial files, such as master.c (which enables the game to boot up),

also are typically kept in a secure directory to keep them from being tampered with and

keep ill-tempered wizards from perusing them for potential holes.

Comments
Now that you know where some of the essential files within the game are located, it is time

to concentrate on the code contained within those files. A piece of code that works within

the framework of LPC basically consists of four things: comments, variables, operators,

and functions. Comments are placed in the code to make it clear to you (as a reminder for

later, perhaps) what you did and, more importantly, to make it clear to others who may

need to work on your code.

There are two ways to place acomment in your code. The first method, which works only

on newer LPMUDs, is to preface your comment with //, as in the following:

//. This is an example of a comment.

Sometimes you may need to make comments that take up more than one line within a

file. You may either place the // on each line of commentary, or you may use the second

method of commenting, which works on all LPMUDs. The second way of commenting

makes use of /* and */. /* tells the compiler to recognize the beginning of a comment,

while */ signals the compiler that the end of a comment has been reached.

A multiple line comment looks like the following:

ex

* This is an example of a comment

* that takes up more than one

* line within a file.

s/f

242 Part Ill ¢ MUD Programming Guide
19 HOOOGHHHHHHG9OO90G9GGS9 9999S 989993 99998 99 S99 9989S 998995906

Note that I indented my comment and carried the asterisk all the way to the end of my

multiple-line comment. This helps to make the comment more visible and is strictly a

matter of preferred form. I could just as easily have used the */ to indicate the end of my

comment after the word file.

You can use this method of commenting for single-line comments, as well. A single line
comment looks like the following:

/* This is a single line comment. */

Once you have mastered code and editing, you may find that while working on a file you

inadvertently break something that used to work. Acommon method used to debug such

a problem is to insert comments to change the newly-modified slices of code into

something the compiler considers to be an explanation, and thus omits. If you acciden-

tally break something while adding code, you should use this method to verify that what

you modified caused the file to fail to load. When you have determined the location of
the failing code, concentrate on fixing it.

Variables
Variables, another component of LPC code, are the means by which you store information

temporarily. There are several types of variables, each of which is used to store a different
type of information.

In order to use a variable, you first must declare the existence of that variable. Declaring

a variable simply tells the compiler that it should reserve space for a particular type of data.
Once you have declared the variable, you then can set it to whatever information you
want to store.

Variables declared outside of a function are known as global variables, while those declared
inside of a function are known as local variables.

Integer Variables
Integers, as you learned when exploring your new commands, are simply whole numbers
ranging from negative infinity to positive infinity. Realistically, a computer cannot yet
handle numbers near the limit of infinity. Normally, an integer can be a full 32 bits.

A declaration of an integer looks like the following:

int count;

The int portion of the preceding example tells the compiler to assign whatever follows it
as integer variables. The second word, count, is the name of the variable. The semicolon
at the end tells the compiler that you are done making an integer declaration.

Following are declarations of multiple integers:

int count1, count2;

SeeP fi

Chapter 13 e¢ Essentials of LPC Programming (on LPMUDs) 243

SOOOSSESSSSO GO 99 BS 8S 9G0G 908999999 S90008 949990900080 9006

This example works almost exactly like the previous example, except that more than one

variable is declared. The comma is used to tell the compiler that you are done with one

part—that it is okay to move on to the next part. Leaving the comma out and just using

a space for separation will result in an error. You can use this method to declare three, four,

or even more integer variables on the same line.

Status Variables
Status variables are used to keep track of things that can be toggled. A status variable, thus,

is a Boolean. This means that the value of a status variable can either be 0 or 1. Typically,

@ is considered false while 1 is considered true.

The declaration of a status variable looks like the following:

status stat;

The status portion of the preceding example tells the compiler that the variable type you

are declaring is status. The stat portion is the variable’s name and, as before, the

semicolon ends your statement. As with integers, multiple status variables may be

declared on one line.

String Variables
A string, as you learned from reading about your new commands, is simply a group of

concatenated characters. Storage of strings, then, obviously is accomplished by using

string variables.

The following is a declaration of a string variable:

string info;

Again, the string portion in the preceding example tells the compiler that the variable

type you are declaring is a string. The info portion is the name of the variable. The

semicolon ends your statement. As with integer and status variables, more than one string

variable may be declared on one line, simply by separating them with commas. In fact,

this is true of all variable types.

Object Variables
Object variables do not store objects, themselves, but rather, pointers to objects. It’s almost

as if an object variable were like a little man whose only job in life is to point at an object

so that the compiler knows where to find it. Once you tell him what to point at, he

continues to point at it until you either tell him to point somewhere else or go away. But,

in order to tell him to point, you must first make him exist.

The following is a declaration of an object variable:

object ob;

244 Part Ill ¢ MUD Programming Guide
DODD VOGHHHOOGHHHOOGHHGHHHHH HWS OGHH PHD WOQIGHOGPSWVIIISOSOS

As before, the first part of the statement, object, tells the compiler you’re declaring an

object variable. The name of the variable is ob, while the semicolon ends your statement.

Mixed Variables
Mixed variables are variables that store integers, strings, or objects. Declaration is as per the

declaration of other variable types. The following is an example of a mixed variable:

mixed mixdvar;

Arrays
Arrays are an expansion of other variable types that can hold more than one piece of

information. Arrays can be of type int, status, string, object, or even mixed. The

information contained in an array can even be another array. (This is known as a

multidimensional array.)

The following are examples of array declarations:

sHae, “7almeeleiee

status *statarr;

string *strngarr;

object *objarr;

mixed *mixdarr;

In the preceding examples, the first part of the statement is used to tell the compiler what

type of variable you are declaring. The * indicates that the declaration is an array. The word

attached to the * is the name you have given the variable, and as always, the semicolon
ends your statement.

Arrays are stored by reference, thus, all assignments of whole arrays will just copy the

address. An array will be deallocated when there is no longer a variable that points to it.

When a variable points to an array, information within the array can be accessed by

indexing. Indices always begin with the first element, which is 0, not 1. Look at the
following example:

arr[3]

The preceding example indexes into the array arr to get the fourth element, whose index
is 3.

The name of the array being indexed can be any regular expression or even a function call.
Look at the following example:

get_name()[2]

The preceding example retrieves from the array the element indicated in brackets returned
by the function get_name(). In this case, we have specified the element whose index is 2.
Thus, the third element of the array will be the result of the example.

Chapter 13 e¢ Essentials of LPC Programming (on LPMUDs) 245
PGQQOWVDDOGHGOOOPDDHGHHHHVOVHIHHHOHOOYHHGHOGHOHOOHHOGO

You can construct arrays by generating a list inside ({ and }), as in the following example:

({ this", that’, “the other", “none of the preceding” }).

The preceding example constructs an array whose size is 4. The array will be initialized

with elements whose values are the strings this, that, the other, and none of the preceding,

respectively.

An array that is not initialized by using the array constructor should have its size allocated

by using the allocate() function.
we

Type Modifiers
You can apply special type modifiers to the declaration of a variable. There are four

modifiers available, as outlined in Table 13.2.

Table 13.2. Special type modifiers.

Type Effect

static The variable is not saved when save_object() is called on the object in

which the variable is defined.

private The variable cannot be accessed by an object that inherits the object in

which the variable is defined.

nomask The variable cannot be redefined by a shadow.

public The variable can be accessed by an object that inherits the object in which

the variable is defined. In addition, the variable may be redefined by a

shadow.

If a type modifier is not stated in the declaration of a variable, it is understood to be of type

public. You may use type modifiers singularly or use several at once. In the latter case, the

type modifiers you opt to use must make sense. You might declare a variable as both static

and nomask in order to disallow both saving by save_object() and redefinition (by a

shadow), but you should not declare a variable as both public and private, as this is self-

defeating. Variable declaration with type modifiers is outlined in the example that

follows.

static nomask object ob;

The preceding example tells the compiler to acknowledge the existence of a an object

variable ob that is both static and nomask. Had you wanted only to make the declaration

nomask (to disallow redefinition by a shadow) it would have looked like the following:

nomask object ob;

246 Part IIl_ # MUD Programming Guide
DDOOHOHOH0H GHGS @ 9 OOS GHGS DB 9 OS 9G G9 S99 S99 09 99 998900!

The functions save_object() and call_other() have not yet been addressed. Also, the

definition of a shadow has not yet been given. These things are covered in the section on

functions under save_object(), call_other(), and shadow(), respectively.

Operators
Variables, as you know, are used to store information. LPC also provides you with ways

to manipulate the information and expressions whose values you might store in variables.

Operators, the third major component of LPC code, provide for such manipulation. Table

13.3 shows a list of the operators available in LPC in the order of precedence, lowest

priority first.

Table 13.3. Operators available in LPC.

Operator Function

EXPR1 , EXPR2 Evaluates EXPR1 and then ExprR2. The returned value is the result

of ExPR2. The returned value of ExpPR1 is discarded.

VAR = EXPR Evaluates Expr and assigns the value to VAR.

VAR += EXPR Assigns the value of EXPR+VAR to VAR. An equivalent statement

would be VAR = VAR + EXPR.

VAR -= EXPR Assigns the value of ExPR-VAR to VAR. An equivalent statement
would be VAR = VAR - EXPR.

EXPR1 |! EXPR2 The result is true if EXPR1 Or EXPR2 is true. If EXPR1 is true, EXPR2 is

not evaluated.

EXPR1 && EXPR2 The result is true if EXPR1 and EXPR are both true. If EXPR1 is false,

EXPR2 is not evaluated.

EXPR1 == EXPR2 Compares the values of ExPR1 and EXxPR2 for equivalency. This

operator can be applied to both strings and integers.

EXPR1 != EXPR2 Compares the values of ExPR1 and ExPR2 for unequivalency. This

operator can be applied to both strings and integers.

EXPR1 > EXPR2 Compares the value of EXPR1 to EXPR2. The result is true if the

value of EXPR1 is greater than that of ExPR2. This operator can be

applied to both strings and integers.

EXPR1 >= EXPR2 Compares the value of ExPR1 to ExPR2. The result is true if the

value of ExPR1 is greater than or equal to that of ExpR2. This

operator can be applied to both strings and integers.

EXPR1 < EXPR2 Compares the value of ExPR1 to EXPR2. The result is true if the
value of ExPR1 is less than that of ExPR2. This operator can be

applied to both strings and integers.

EXPR1 <= EXPR2 Compares the value of ExPR1 to EXxPR2. The result is true if the
value of ExPR1 is less than or equal to that of ExPrR2. This operator
can be applied to both strings and integers.

Chapter 13 e Essentials of LPC Programming (on LPMUDs)

Operators are not tricky. Using the preceding list of operators and their uses, you should
be able to decipher mathematical operations and logical comparisons in code you more or
cat. Eventually, after spending some time reading code to get a feel for it, you'll be ready
to move on.

The following code sample combines some of what you already know about LPC into a
series of logical operations that a game driver can comprehend and execute. You should
read it slowly, thinking through the code as you go so that you understand what it is that
the compiler is being told to do on each line. Comments are provided to help you.

247
POSS SS9GH9 GS OO98 GO O9GO0O000899OS0000088900

/
TESTCODE

+ + + SF FF SF HF

This is a simple, sample piece of code. It illustrates the use
of operators as well as appropriate syntax. There will be things
contained within that you have not yet seen. For now, do not worry
about those things, as they will be explained soon. You should

note that variables, when declared, are uninitialized. All
* variables, regardless of type, equal ® when they have not yet been
* initialized.

*]

rah er tevee lle}, ee // Declare 3 integer variables: a, b, andc
string tosay; // Declare string variable: tosay

object ob; // Declare object variable: ob

mixed any; // Declare mixed variable: any

reset() // Begin defining what happens when reset() called

{
alae: // set a equal to 1
b = 2; // set b equal to 2

Cc = atb; // add a to b and set c equal to the result

ob = this_object(); /*
* set ob equal to the value returned by the
* function this_object()

AY

Lia C2==83%) // IF c is equal to 3 (it should be)

{ // THEN
c++; // increment c by one (to make it equal 4)
} // END THEN

else // ELSE c isn't equal to 3 (this can't be true)

{ // SO THEN

Ce=" 4; // set c equal to 4 (this should never happen)

} // END THEN portion of else

if (c &&c !=a) // IF c has a value (c!=0) AND it doesn't equal a

{ // THEN
any = ct \inie; // set any equal to c (4) plus a carriage return

tosay = "C is "tany;// set tosay equal to the string "C is "+any

} // END THEN portion
eise // ELSE c must either be @ or equal to a (not true)

{ // SO THEN
any = "FAILED\n";

}

write(tosay) ;

destruct(ob) ;

// set any equal the the string "FAILED\n"

// END THEN portion of else

// write the value of any to the screen

// destroy ob (this object)

248 Part Ill © MUD Programming Guide

OG @WOOGHHHGHHHVOOOHGHHHDD BVQDIGHHHDDDVPOSHGBOBBPOVIOE

return 0; a .

* end this function by returning. If no

* return statement is included, a function

* is assumed to return 0

} a eRe definition of reset() function

The preceding routine is about as simple as they come. It should work on all LPMUDs that

are using 3.0 native (or more recent) drivers. If you’re tinkering on an older MUD, then

it might not work, as older MUDs don’t usually support // comments. Try editing a file

called test.c. From the ed prompt, use a to append. Then type in this program. You can

leave out the comments if you want. When you finish typing it in, enter a period on anew

line to stop appending. Then use x to save the file and exit ed. Your next step should be

to clone test.c. Upon doing so, you should see c is 4. appear onscreen on a line by itself.

At that point the object will self-destruct.

Syntax
Syntax is extremely important in LPC, as with all coding languages. If your syntax is

incorrect, it will cause errors when the game driver tries to load a definition file. These

errors usually are logged somewhere in /1og for you.

Braces
Braces, { and }, are used to indicate the opening and closing of a function, a clause in an

if-else statement, or the clause of a loop. The open brace, {, indicates the beginning of

a clause, while the close brace, }, indicates the end of one. Look at the following example:

id(str) { return str == "An object"; }

In the preceding example, the braces denote the opening and closing of a function.

The next example illustrates the use of braces to indicate the clauses in an if-else

statement.

if (a==b)
{
a = att;

return a;

}
else

return a;

}

In this example, braces denote the opening and closing of clauses in an if -else statement.

What is contained within the braces is the then clause of all such statements.

This following and last example shows braces used to denote the body of a for() loop.

fO0 (= 20 ee <ee lO eich tae)

Miapalerey(715 xo MiGyS SY ae Gh sm 3 Mal hg

}

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 249
2 SEESSOSSSBSOGO OSS 9 OHGG OO OOO O0HGOHHHOOHOHHHOHOOOOOOOO

The body of a while() loop is donated exactly like that of a for() loop.

Semicolons
You use a semicolon (;) to indicate the end of a statement.

Parentheses
You use parentheses, (and), to denote the arguments given to a function, as well as the
order of operations within an expression, as in the following examples:

add_action("drop_thing", "drop");

bi

(Mer OI I) Coleus se (Gl se (9) ch PON yg

The first example illustrates the use of parentheses to denote the arguments to a function
while the second example uses parentheses to ensure that a is added to b before the rest
of the expression is evaluated.

Return Statements
Every function must end. You use the return statement to end a function by returning a

value. If no return statement is found in the function, then the function is assumed to

return a value of @. Because all variables have a value, you can return variables, as well. Any

variable type, even arrays, may be returned. In addition, because all functions return
something, you may return a function call!

Conditional returns (that is, a return that is dependent on the truth or falsehood of an

if-else evaluation) are commonly used to end the evaluation within a function in a

timely manner. When you write code, you should return where appropriate to avoid any
unnecessary evaluation. This is good coding practice.

e

if-else
The if () statement in LPC is identical to that provided by the C coding language. An if()

statement is used to test the conditions of an expression for truth or falsehood. An if()

statement is followed by a body of code (that may or may not need to be placed within

braces, depending on how much code follows the if ()). This body of code is the then clause

of an if() statement. The then clause is evaluated only if the if() statement is true. Look

at the following example:

if (a == erecunnma,

In the preceding example, the if() statement checks to see if a is equal to b. If this is true,

then the body of code that makes up the then clause is evaluated; that is, the value of a is
returned.

250 Part Ill #« MUD Programming Guide

DDOOQOGOHHHGHHG GO OOSHGOGDB WOOP HGHGIID BOIS SGI ISB SSVI SISIISE

You can express if() statements as follows:

if (expression) statement;

if (expression) { statement; }

if (expression) statement;

The preceding three examples all mean exactly the same thing. The space between if and

the first parenthesis is not necessary, but is commonly used to help make if () statements

more visible in the code. You can put braces around then clauses that consist of only one

statement for clarity, if you feel the need.

When more than one statement is necessary in the then clause of an if() statement, braces

are required to embody the then clause, as in the following example:

if (expression)

statement;

statement;

statement;

}

In this example, braces are necessary, as multiple statements are made in the then clause

of the if() statement.

An if() statement may be followed by an else clause, as well. The else clause is evaluated

only if the expression within the if () statement is false. Look at the following examples:

if (expression) statement;

else statement;

if (expression)

{
statement;

statement;
statement;

}
else

{
statement;

statement;

i

The number of clauses of an if() statement is not explicitly limited. You may follow an

if() statement with another if() statement in the else clause of the first if(), as in the

following example:

if (expression)

statementd;
statementd;

else if (expression1)

statementi;

statement ;

}

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 251

else if (expression2)

statement2;
statement2;

}

The statements inside the then clause of an if() statement may be if() statements,
themselves. This is called nesting and is common. Look at the following example:

if (expression)

{
statement;

statement;

if (expressionA)

{
statementA;

statementA;

}
else

{
statement;
statement;

}

By now, you have noted that in each example, I indent my braces two spaces starting on

a new line, and have no statement on the same line that the braces are on. This makes for

easier reading, as all clauses are indented, and thus, easier to see. You can place your braces

and statements where you want, but try to make it easy to read your code in case others

want to use it as an example or must work on it to help you fix it. Also note that you can
nest if() statements in the else clause of an if().

Loops
You use a loop whenever you need to perform the same operation a number of times. There

are two types of loops: for() and while(). Use of the for() loop is preferred and should be

used where possible when a loop is needed.

for()
The LPC for() loop is identical to that provided by the C coding language. As per

if (),braces are not needed if only one statement makes up the body of code to be executed

during the loop. Braces are required if more than one statement is to be executed
throughout the loop. Look at the following examples:

for (expression®; expression1; expression2) statement;

for (expression1; expression2; expression3)

statement;

statement;

}

252 Part Ill © MUD Programming Guide

OBB QOOOHHHGHGHIHOOGHOHHHHHHVDOGHGGHHDIIDOPOSGHHPDIDHIWS9OGOBDS BIOS GBISe

expression1 is evaluated once prior to the execution of the loop.

expression2 is evaluated at the beginning of each iteration of the loop.

The loop will be terminated if expression2 evaluates to @. expression3 is evaluated at the

end of each loop iteration. Look at the following example:

aie Bhs

ior (ak Sl al << ale aig)
write("I — ” + a1 + ss 10-I == wo (10 = i) + a 0 ta eS

The preceding example declares an integer variable i. Before the execution of the for()

loop begins, i is set to 0. The loop execution begins and the body of the loop writes

I == 0, 10-I == 10. The variable i is then incremented by one and the loop is executed again.

On this second pass, the output would be I == 1, 10-1 == 9. The loop will terminate

execution when i is equal to 11.

Following is an example of the loop’s output:

Ss

NeW OW Ti Men OM ow MW

pee A RO A ot ann Ww ho ow ow

—_ Ss

HHH - NWA AON WO —

oe ee ee ee oe | POR Ue Se Be Wt 1081 ii} Ss

A break; statement in the body of the loop terminates the loop. A continue; statement

resumes the execution from the beginning of the loop after evaluating expression3. Both

the break; and continue; statements should always be followed by a semicolon, as with any

statement that is not followed by a clause or body of code.

while()
The LPC while() loop also is identical to that provided by the C coding language. The

placement of braces to indicate the body of the loop is as per the placement of braces when

using for(). The syntax of a while() loop is as follows:

while (expression) statement;

while (expression)

statement;

statement ;

}

The statements inside the body of a while() loop are executed repeatedly until the

expression evaluates to 0. If the expression evaluates to @ just prior to the execution of the

loop, then the body of the loop will not be executed. As per for(), break; Or continue;

statements may be made within the body of the loop to stop or start its progress. Look at
the following example:

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 253
DODD®QOVSGHOG HHO HHS HOHHHH OHH HHHHHHHSOHHHHHHHHOOOOOOE

Unies

while (i < 10)
{
WEE CST ae ear OTe 4010 Tyee SA):
alts

}

The output of the preceding example will look exactly like the output of the example
previously shown in the section on for().

In the previous example, had I failed to increment i, the result would have been an endless
loop. LPC, however, is designed to permit only 50,000 evaluations at a time. Thus, the
preceding loop would have run indefinitely until it reached LPC’s internal evaluation

limit, at which point an error specifying that the evaluation was too long would have
resulted.

Escapes, #define, and #undef
When dealing with strings in LPC, you must use certain escape codes to indicate specific

types of formatting. There are two escapes of relevant importance: \n and \t. You saw the

\n escape in the tidbit of code (called TESTCODE) discussed in the section on operators.
\n indicates that a carriage return should be inserted where the \n appears in a string. The

\t escape, which seldom is used and is new to you, indicates that a tab (five-space
indention) should be inserted where the \t appears in a string.

You also need to be familiar with #def ine and #undef. The #def ine is used to globally define

something. The #undef is #define’s counterpart and is used to undefine it. Obviously, you

can’t #undef something you haven't #defined. It is recommended that #defines always

consist of capital letters, as this makes them easier to see within the code. Look at the
following example:

#define PHAEDRUS "Idealistic dreamer"

Escapes, #define, and #undef are all preprocessed. When the code in a file is about to be

compiled, it first is processed. During this preprocessing, the values of \n (a carriage

return), \t (a tab), and any #def ines are substituted for their markers. So, assuming that the

preceding #def ine is in a file, the preprocessor will mnemonically replace every occurrence

of PHAEDRUS With Idealistic dreamer until it finds a #undef PHAEDRUS statement or reaches the

end of the file.

Inclusion and Inheritance
Inclusion and inheritance are two ways by which you can incorporate all the aspects of one

file into another file. Inclusion of a file is accomplished by using a #include statement
followed by a filename, as in the following example:

#include <living.h>
#include "/obj/living.h"

254 Part Ill © MUD Programming Guide

OBO OOHHHHHSHGI HOO GH GHOGDD BOSD SOGPGIGBVOVBOVVSES

When #include is handled by the preprocessor, it searches through the system’s standard

include directories (as defined by the gods who tinkered on the driver) if only a filename

is given. If it fails to find the file within the standard include directories it searched, an

error will result. If, however, you specify a full path to #include (as in the preceding second

example), there should be no problem with the inclusion (provided the file exists), as the

preprocessor searches the path indicated. This assumes, in both cases, that the file you are

including works properly.

The #include statement primarily is used for including files that contain commonly used

#defines or other common data. It is considered good form to have any #includes at the

beginning of your file, along with your #defines and global variable declarations. Do not

use #include for incorporating non-data-type code (that is, code that defines an object)

into an object you are building. That’s what inheritance is for.

Inheritance is accomplished with the inherit statement followed by a filename. Inherit-

ance must be done before any local variables or functions and should be done near the

beginning of your file to make it easier to spot, as in the following example:

inherit "/obj/monster.c";

You should use inheritance whenever you want to incorporate code from one type of

object into the file that defines the object you are building. Obviously, if you inherit

/obj/monster.c;, as in the preceding example, you should be working on a monster

because inheriting monster.c will make all the aspects of monster.c part of the definition

of the object on which you are working. Making inheritance of /obj /monster.c, simply put,

enables you to use all the global variables and functions from /object/monster.c in the

object on which you are working, as if they were a part of the code that you already had

written.

Functions
The last and largest component of LPC code is LPC’s functions. Functions are divided into

two groups, known as efuns and lfuns. efun stands.for external function. An efun, simply

put, is a function that is external to the piece of code you are working on. In other words,

it isa function that is defined in the driver or in simul_efun.c and does not, as a result, need

to be defined in your code. An 1fun, or local function, is a function that is local to a piece

of code and must be defined within that piece of code for it to work.

All efuns and lfuns return values. If no value is specified to be returned by a return

statement (such as return 1;), then a return of 0 is implied. Table 13.4 shows several types

of values a function may return.

Table 13.4. Values a function can return.

Type Value Returned

void

int

Function returns 0 or 1

Function returns an integer value

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 255
OOOO E 29 OOS SYGOSSH SOS 09 OOSS900 008 909G90O0008800E

Type Value Returned

string Function returns a string value

object Function returns a pointer to an object

varargs Function returns any value

Not all functions expect arguments. Those functions that do expect arguments will fail

to perform properly if the arguments provided are not of the appropriate type. The types

of arguments that can be provided are int, string, object, mixed. Arrays of these types also
may be used, where mandated.

What an external function returns, its name, and the proper argument types for it are
commonly summarized in the following format:

void add_action(string func, string cmmd)

In the preceding example, void indicates that the function returns either @ or 1 for the

function add_action(), which expects two arguments, each of which are strings as denoted

by string. The words func and cmmd in the preceding example are generally further

explained in documentation somewhere on an LPMUD (usually by using man). This format

is used to describe most of the functions usable in LPC, as it will save time and will

familiarize you with both the look of typical manpages as well as type casting.

Functions also may return an array of any of the aforementioned types. Following is an

example summary of a function that returns an array:

string *get_dir(string dirname)

This example follows the same guidelines as the previous example. It differs only in the

presence of an *, which indicates that the function returns an array of the type that

precedes it; in this case, a string.

Some special types modifiers exist, as well. These special types have nothing to do with

the value returned by a function, but rather, influence how a function reacts in specific

situations. Table 13.5 lists the special type modifiers.

Table 13.5. Special type modifiers.

Type Effect

static Function cannot be called via a call_other()

private Function cannot be accessed by any other object inheriting its defini-

tion, nor can it be called via a call_other()

nomask Function cannot be redefined by a shadow

public Function can be accessed by any other object inheriting its definition,

can be called via call_other(), and can be redefined by a shadow. All

functions default to public unless otherwise specified.

256 Part Ill © MUD Programming Guide

1DDDVOGHHHHHHD VOHOGHHGHHHD QV GWVGHYVS ID VIGPSSGSSISIOQOOE

As with variable type modifiers, the preceding modifiers can be mixed and matched when

declaring a function. Obviously, you would not declare a function to be both private and

public at the same time. Commonly, static and nomask are used together to keep any other

object from manipulating a function and to prevent redefinition of the function by a

shadow. Look at the following example:

static nomask int drop(silently) { return 1; }

This example ensures that no outside interference can influence the evaluation of

drop(silently).

add_action()
void add_action(string func, string cmmd)

add_action is an efun that sets up a local function func to be called when a user inputs a

command cmmd. Look at the following example:

add_action("drop_thing", "drop");

In the preceding example, when drop wand is entered, drop triggers a call to the local

function drop_thing(). If drop_thing() is found, the argument wand (second word of what

the user typed) is passed to it for its own use.

Optionally, the second argument cmmd can be omitted. If omitted, there must be an

associated add_verb() or add_xverb() statement to accompany the add_action statement.

Use of add_verb() is archaic as the second optional argument of add_action() is the verb.

It remains supported, but is obsolete. add_xverb(), however, is still essential.

You should only call add_action() from the init() routine in your code.

add_verb()
void add _ verb(string verb)

This efun is connected to the add_action() efun. It will set up the command verb to trigger

a call to the function set up by the previous call to add_action(), as in the following

example:

add_action("“drop_thing"); add_verb("drop");

The add_verb() efun is, as was previously mentioned, obsolete.

add_xverb()
void add_xverb(string xverb)

This efun is also connected to the add_action() function. It will set up the command xverb

to trigger a call to the function set up by the previous call to add_action(). add_xverb() is

different from add_verb() in that a space is not required between the command and its first

argument. Look at the following example:

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 257
2DBOS BO SS®QPHOS GS OOGSDSOOHSHHOVIVHHHOHGHOOGHOHHHHHHHOOHVHHHHHHOOOOOOOO!

add_action("emote"); add_xverb(":");

Assuming that a function emote() is defined to permit you to emote, the preceding
example enables you to enter :smiles. to emote a smile.

all_inventory()
object *all_inventory(object ob)

The all_inventory() efun returns an array of the objects contained in the inventory of the
object ob, as in the following example:

object *allob;

allob = all_inventory(this object());

The preceding example sets the object variable allob equal to an array consisting of
pointers to all the objects contained in the inventory of this_object().

allocate()
mixed *allocate(int size)

This efun allocates an array of size elements. The number of elements must be greater than

or equal to @ and must not exceed the standard system maximum (which usually is 1000).

allocate() is hardly needed anymore, as arrays can be added using the + operator. Also

contributing to the obsolescence of this function is the fact that arrays can be constructed

and initialized using the ({ }) format, as in the following example:

string *queue;

queue = allocate(100);

atoi()
int atoi(string str)

The atoi() efun returns an integer if the string str is an integer. 0 will be returned if the

string str is not an integer, as in the following examples:

atoi("42")

AtTOL(] DS)

The first example returns an integer value of 42, while the second example returns 0.

atoi() is used to convert strings to integers, where possible.

break_string()
string break_string(mixed str, int length, mixed indent)

This efun breaks a continuous string that contains no newlines (\n’s) into a string with

newlines inserted at every length character.

258 Part Ill ¢ MUD Programming Guide

1DDOQVOGHHHGHHHHOHOOGHHHGHHHDOVIOVOH HOSS BD VWOVPOD GDB @VWIPSIBSSOSO'

The indent argument is optional. If indent is defined and given as an integer, indent

number of spaces are inserted after every new line. If indent is defined and isa string, indent

is inserted before every new line.

If the first argument is given as an integer instead of a string, break_string() will

return 0.

call_other()
unknown call_other(object ob, string func, mixed arg1, mixed arg2, ...)

This efun calls a function func in an object ob with the arguments arg1, arg2, and as many

other arguments as you want to pass. The value returned by call_other() is that which it

received from the function func it attempted to call in object ob. If ob has not yet been

loaded, it will be loaded.

call_other() can be written syntactically in code to save space. ob->func(arg1, arg2) and

"full path of file"->func(arg1, arg2) are both equivalent to call_other(ob, "func", arg1,

arg2). If you want, you can use a string variable in place of full path of file when using

that format.

If ob does not define a function func, call_other() will return @. Look at the following

examples:

call other(“/obj/pllayer.c”, “drop thing”, “all”);

"/obj/player.c"->drop_thing("all");

Both the preceding examples achieve the same thing, which is to call a function,

drop_thing() in the object whose definition file is /obj/player.c and pass the argument all

to that function. Following is a cleaner way to do the same thing:

object ob;
ob = find _object("/obj/player.c");
ob->drop_thing("all");

call_out()
void call_out(string func, int delay, mixed arg)

The call_out() efun calls the function func in this_object(). The call will take place in

delay seconds. If the optional argument, arg, is supplied, it is passed to func. You should

note that the efun this_player() will not work in a function called via call_out()—

this_player() must either be passed to the function func as the argument arg or stored in

a global variable if it needs to be maintained, as in the following example:

callvour(shiteplayen’ a2, thiseplayer()=)is

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 259
9 SSSSSGSPBOSVISSHHSHGH GOI SSHH99S OOH HHHHG0OOOGHOHGHSOOOOSOOO

call_out_info()
mixed *call_out_info()

This efun gets information about call_outs that are pending. It returns an array, whose
elements are themselves arrays, each of which consists of four elements, as described in
Table 13.6.

Table 13.6. Elements of arrays within call_out_info() return value.

Element Content of Element

1)

{

2

Pointer to the object with pending cal1_out()

Function being called out

Delay remaining until function is called

Optional argument passed in call_out()

caller()
object caller()

This efun returns a pointer to the object that called the current function. If caller() is
calied from the parameter list of a function call, it will return the pointer to the object that
contains the function being called, not a pointer to the object that called the current
function.

can_put_and_get()
int can_put_and_get(string str)

The can_put_and_get() lfun returns true (1) ifit is possible to put something into the object;

otherwise, it returns false (0). If no return statement is supplied, as with all functions, the

default return value will be o. If you do not put this function into an object, then it is the

same as if the function returned 0. This means that all objects default to disallowance of

the placement of objects inside of them, unless the following statement exists within the

file that defines them (either by inheritance, or by having been coded into the object), as
shown in the following:

can_put_and_get(str) { return 1; }

When a player enters look at xxx, the string value of xxx is passed to can_put_and_get() as

str to test if the player is permitted to look at the inventory of the object. In all other cases,
str iS Q.

260 Part Ill ¢ MUD Programming Guide

GDQVWOOHHHHHHIHOHOOHHHHID DOGO GGDOIDVDWVVPHHGSSBOOO BOGDSSOS

capitalize()
string capitalize(string str)

The capitalize() efun converts the first character in str to an upper-case character and

then returns the new string. Passing non-string values to this function causes it to fail. It

is recommended that you perform a check to ensure that something is a string by using

stringp() before passing it on the capitalize(). Look at the following example:

string str;

str = "MUDsex is dumb.\n";

if (stringp(str)) str = capitalize(str);

The preceding example declares str, sets str equal to MUDsex is dumb. \n, checks to see that

str is a string and, if so, capitalizes it. The value of str is then set to what capitalize()

returns, that being MUDsex is dumb. \n.

cat()
int cat(string filename, int start, int length)

The cat() efun lists the file found at filename. filename should be expressed as a full path

and may not contain spaces. The optional integer arguments start and length are used to

cat different blocks ofa file. The start parameter indicates the first line number to display.

The length parameter indicates how many lines to display after the start line. cat() returns

an integer value that is equal to the number of lines that it displayed. If the value returned

is less than length, then cat() reached the end of the file. cat () will return a negative value

if one or more of the parameters were improperly given.

The start parameter also may be a negative number. In this case length still indicates how

many lines to display from the start line, but the file will be catted from last line to first.
In other words, specifying a negative start parameter tells cat() to act like tail() (reading

from the end of the file to the beginning).

catch()
mixed catch(string expr)

The catch() efun is used to trap errors. The expression expr will be evaluated and 0 will be

returned if there is no error. If there is a standard error, a string containing a leading * is

returned.

The throw() efun can be used to immediately return any error caught by catch().

catch() is a CPU-expensive function and should be used with discretion. Generally,

catch() is used only in places where an error would cause serious problems to the game

as a whole.

The following example illustrates the use of catch() to trap an error, should one occur,

when the function drop_thing() is called (with an argument of “all”) in /obj/player.c.

catch("/obj/player.c"->drop_thing("all"));

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 261
©9BODSOGGSHGHOS8HOHHHGHOOSOOHHGHONHHOHHHHOHOHOOOBOOE

catch_tell()
void catch_tell(string str)

The catch_te11() lfun is used to enable objects to act when they receive a tell_object(),
tell_room(), or say() that contains the string str. The object that contains catch_tell()
must be a living object and must have enable_commands() set in it.

clear_bit()
string clear_bit(string str, int num)

This efun returns the new string that results when bit num is cleared in the string str.

clone_object()
object clone_object(string filename)

The clone_object() efun loads anew object from the definition file filename and gives the
object a unique object number. A pointer to the object is returned. The following example
illustrates the proper syntax for clone_object().

clone_object("/obj/torch.c");

command()
int command(string str, object ob)

command() is an efun that, when called, executes str as a command in the current player
as if it were issued by that player. If the second optional argument ob is given, command ()
will execute str as a player command in the object specified by ob. Generally, functions
that are static cannot be called via command(). This provides some protection from potential
command() abuses.

An object must be living and have enable_commands() set in order for command() to work on
it. command() returns 1 if it is successful in forcing the execution of str, @ if it fails. The
following example shows the proper syntax for use of command().

command("smile", this_player());

cp()
void cp(string source, string destination)

The cp() efun copies the file source to the file destination. Both arguments should be

expressed as a full path and neither may contain spaces.

262 Part Ill © MUD Programming Guide

GBQVQOOOOHHHHGHOOVHHHHHDD VWPOGHDDD BOBBIE

create()
void create()

create() isanlfun found only on LPMUDs running in native mode. This efun is called only

once, when the object being loaded is first created. All major initialization for the object

being generated should be done inside of this function. You should note that when

create() is being processed, the object containing the create() statement does not yet

have an environment.

LPMUDs of version 2.4.5 or older use reset(), not create(). This also is true of LPMUD

versions 3.0 (or more recent) that are running in compat mode.

create_wizard()
string create_Wizard(string name)

The create wizard() efun creates a home directory and a castle for a wizard. The directory

is created for the wizard name nane. If archaic-style castles are used, a copy of the definition

of a castle will be placed within the newly created directory. Automatic loading of the

castle also will be set up if a copy of the basic castle definition is made. The string returned

will be the name of the new castle. If an error occurs, 0 is returned.

creator()
string creator(object ob)

The creator() efun returns a string consisting of the name of the wizard that created object

ob. If the object was not created by a wizard creator(), it returns 0.

crypt()
string crypt(string str, string seed)

The crypt() efun encrypts the string str using two characters from the string seed. If the

seed is 0, then a random seed is used.

ctime()
string ctime(int clock)

The efun ctime() evaluates the argument clock as the number of seconds since January

1st, 1970, at 0.00 hours and converts it to a human-readable string in the following form:

Tue Nov 27 02:022:51 1980

If clock is not specified, time() is used as a default.

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 263
> SEE OSBSSOSSGHBOSO2OOSSHGOGOOOVOHHHHHOOHHOHOHOHOHOOVOOOE

deep_inventory()
object *deep_inventory(object ob)

The deep_inventory() efun returns an array of all objects contained by the given object ob,
including the objects recursively contained in other objects. If the argument ob is not
given, deep_inventory() defaults to using this_object() as an argument.

destruct()
void destruct(object ob)

destruct() isan efun that, when called, destroys and removes the definition of object ob.
The argument also can be a string that is the full path of the definition file from which
the object you want to destroy was loaded. After destruct () has been called on ob, all global
variables will be set to an uninitialized state (that is, they will be set to a). Following is an
example:

destruct(this _object());

disable_commands()
void disable _commands()

disable_commands() is an efun that disables the capability of the object in which it was
called to use commands normally added by external objects. Normally, external com-
mands are added when external objects enter the immediate environment of the object
in which disable_commands() was called; disable _commands() simply prohibits the addition
of commands when addition is supposed to take place. Calling disable _commands() will
cause a living object to cease to be classified as living.

drop()
int drop(int silently)

drop() is an lfun that is defined by all objects that need to control whether they can be

dropped. If silently is true (that is, silently is equal to any value other than 0), then no

message will be written to indicate that the item has been dropped.

All objects default to being droppable (because a function returns @ unless told to do

otherwise by use of the return statement). If you want an object to disallow the dropping
of itself, drop() should return 1.

If you make an object that self-destructs when drop() is called, you should be sure that

drop() returns 1, as an item that was just destroyed cannot also be dropped! Following is

an example of the drop() command.

drop(silently)

{
if (present("/obj/curse.c", this_player())) return 1;

264 Part Ill © MUD Programming Guide

GOQQWVSOOHHHGHGDWDEGHHHGHHDHVOGOHDOHGHD WWOSPGOSIDDWSOSOIE

An object whose definition file contains the preceding drop () function will not allow itself

to be dropped if /obj/curse.c (presumably a curse of some sort) is present in the

environment of this_player() (the person who issued the command that called drop()).

enable_commands()
void enable commands ()

enable_commands() isan efun that enables the capability of the object in which it was called

to use commands normally added by external objects when they enter the immediate

environment of the object in which enable_commands() was called. The object in which

enable_commands() was called also will be marked as living (that is, a call of living() on the

object will return true). enable_commands() must be called within the object if your

intention is for the object to interact with other players, as this is what makes an object

fall into the classification of living.

Avoid calling enable_commands() from anywhere in your code, except within the body of

reset() (Or create() if the LPMUD on which you are coding is running in native mode).

This is because the issuer of the command will immediately be set to the new object.

environment()
object environment(object ob)

The environment() efun returns a pointer to the object that surrounds object ob. If no

argument is given, then a pointer to the object which surrounds the current object

(this object()) is returned. Following is an example:

object plr;
plr = environment(find_player("bodie"));

The preceding example declares object pir and sets it to a pointer to the object

surrounding that object to which find_player() (which is looking for a player named

“bodie”) returns a pointer, if there is one.

exec()
int exec(object new, object old)

The exec() efun is used to shift an interactive user from one object, old, to another object,

new. A function local to master.c, valid_exec(), is called with the object issuing the exec()

given as an argument. If master.c’s valid_exec() accepts the calling object, then the

interactive user is switched from the object 01d to the object new.

exit()
void exit(object ob)

Chapter 13 © Essentials of LPC Programming (on LPMUDs) 265
'BSDGBGSSO®WBGSHOGO OHI OHOGOGHGOHOHHOHGHSOLOHHHHHOHHOOOOOOE

The exit() lfun is intended for use in rooms and is used only on LPMUDs running in
compat mode. exit () is called every time a living object ob leaves the object (which should
be a room) in which exit() is defined. After exit() has been called, the function
this_player() will return a random value. You should store this_player() in a global
variable before exit() is called in your room if you need to keep track of it.

explode()
string *explode(string str, string char)

The explode() efun returns an array of strings consisting of each substring of str separated
by the string char. explode() is used to break a string into pieces using char as the character
around which the break is done. The string component char is omitted from the pieces.
Following is an example:

explode("players/whiplash/workroom", "/");

The preceding example would return an array whose elements are strings in the form of:
({"players", "whiplash", "workroom"})

extract()
string extract(string str, int from, int to)

The extract() efun extracts a substring from a string str starting at character from and
terminating the extraction at character to. The first character of a string is elemento of that
string, not 1. The last parameter, to, is optional. If the last parameter is not specified, then
extraction will proceed from character from to the end of the string. Following is an
example:

extract("MUDding is addictive", 11, 19);

extract("MUDding is addictive", 11);

Both of the preceding examples mean the same thing. Extraction as specified preceding
will return the string addictive.

file_name()
string file_name(object ob)

The file_name() efun gets the file name of the object ob. If the object for which you are

trying to get a filename is a cloned object, it will not have any corresponding filename.

Instead, it will have a new name, which is based on the original file name. Following is
an example:

file_name(this_object());

This example returns the filename of the object in which file_name() is called.

266 Part Ill * MUD Programming Guide

1D @®@WQOOGOHOGHHDHHOOHGHH
HHDH HOOPS GHHDD G9 BOOGSGOSGBDI GIS OPBBISSIOO’

file_size()
int file _size(string filename)

This efun returns the size of a file filename. filename should be expressed as a full path and

may not contain spaces. If filename does not exist, file_size() returns -1. A value of -2 is

returned if filename is a directory. Following is an example:

if. (ofilessize((*/IpMup. Log” .) == <1)

write("File does not exist.\n");"

The preceding example will write File does not exist. if the file /1pMUD.1og does not exist.

file_time()
int file_time(string filename)

The file_time() efun returns the time in seconds since January 1st, 1970, at 0.00, when

the file filename was last modified. filename may not contain spaces and should be

expressed as a full path.

filter_objects()
mixed *filter_objects(mixed *arr, string func, object ob, mixed extra)

The filter _objects() efun returns an array holding the items of arr filtered through a

call_other () to the function func in the object ob (ob->fun()). The function func in object

ob is called for each element in arr with that element as a parameter. If a second parameter

extra is specified, it is sent in each call, as well. If the call_other() returns true, then the

element is included in the array returned by filter_objects(). A value of 0 is returned by

filter_objects() if arr is not an array.

find_call_out()
int find_call_out(string func)

The find_call_out() efun finds the next pending call_out() for the function func in

this_object(). The amount of delay time left in the call_out() isreturned by find_call_out().

If the function func has not been set for a call_out(), then find_call_out() will return a

value of -1. Following is an example:

if (find_call_out("waste_time")) remove_call_out("waste_time") ;

The preceding example searches this_object() for a call_out() of the local function

waste_time(). If a call_out() is found, then it will be removed, as per the then portion in

the preceding example.

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 267
© 2S SOSSSSSOGOS®DSGHOGO OSH OGHOHHHH OOO OHHHHHHOOHOHOOHHHOEOO OOOO!

find_living()
object find_living(string str)

find_living() is an efun that tries to find the first living object that answers to the identity
str when id() is called. If such an object is found, a pointer to the object is returned. If
not found, find_living() returns 0. Following is an example:

object ob;

ob = find_living("dwarf");

In this example, if a living object that id’s to dwarf is found within the game, then ob is
set to a pointer to the object returned by find_living(), that object being the one which
id’d to dwarf.

find_object ()
object find_object(string str)

find_object() is an efun that tries to find an object that has the filename of str. This will
only work if the object has been loaded. If no object exists that has the filename str, then
find_object()returns 0. Following is an example:

object ob;

ob = find_object("/obj/master.c");

This example will, if /obj/master.c is loaded (and it must be for the game to be up!), set ob
equal to a pointer to it.

find_player()
object find_player(string str)

The find_player() efun attempts to find the player whose name is str. If a player object
whose name is str is found, then find_player() returns a pointer to that object. Ifno player
object whose name is str can be located, then find_player() will return @. Following is an
example:

object ob;

ob = find_player("stingray");

first_inventory()
object first_inventory(object ob)

The first_inventory() efun returns a pointer to the first object in the inventory of object
ob. Following is an example:

object ob;

ob = first_inventory(this _object());

268 Part Ill # MUD Programming Guide

OOO OOOOSOHGHOHOGOGGOGHH DIIGO HD HIOIFD WIG OHOHDOID PIO PIGS IIOIIBOE

function_exists()
string function_exists(string func, object ob)

The function_exists() efun returns the filename of the object that defines the function

func in object ob. The returned value can be something different than what is returned by

file_name(ob) as a result of object ob inheriting some other file. In this case, the filename

of the inherited file will be returned. function_exists() will return @ if the function func

is undefined.

get()
int get()

get() is an lfun that is defined by all objects that need to control whether they can be

picked up. When a player enters get xxx, id() is called with the argument of xxx. Assuming

that an object is found that responds to the id of xxx, and assuming that the object is within

the environment of the player, get() is called. get () should return 1 if it is possible to pick

up the object.

All objects default to refusing to be picked up (because a function returns @ unless told to

do otherwise by use of the return statement). This is so that certain objects, such as players,

cannot be inadvertently picked up. Following is an example:

get ()

if (this _player()->query_level() >= 21) return 1;

}

An object whose definition file contains the preceding get() function will allow itself to

be picked up if the value returned by a call_other() to the function query_level() in

this_player() (the person who issued the command that called get()) is greater than or

equal to 21. Assuming level 21 to be the minimum level of a wizard, this could be used in

an object that only a wizard may pick up.

e

get_dir()
string *get_dir(string dirname)

The get_dir() efun returns a string array containing the names of all files located within

the specified directory dirname. The string dirname should be a full path with a trailing slash

followed by a period. Following is an example:

get_dir("/obj/.");

This example returns a string array whose elements are all the filenames in the direc-

tory /obj.

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 269
2229S SOSHHSS OOO YSSGHOHGHGHSOOGDHOHGHOHOOOHHHHOOHOOOOOOOOH!

get_localcmd()
string *get_localcmd(object ob)

get_localcmd() is an efun that returns a string array of all local commands added to the
object ob. If no argument is given, then get_localcmd() uses this_object() by default.

grab_file()
string *grab_file(string filename)

The grab_file() efun loads the entire file filename into a string array. Each element of the
returned array is a separate line of the file filename. There is an internal maximum limit
to the size of the array, which typically is 1000 elements.

heart_beat()
void heart_beat()

heart_beat() is an lfun that is automatically called by the game every two seconds. When
using heart_beat(), you should make sure that it is running only when necessary, as
heart_beat() Consumes many game resources. The heart_beat () of an object may be turned
off and on by using the set_heart_beat() efun. If there is an error somewhere in the
heart_beat() routine, heart_beat() automatically will be turned off and will not be able to

be restarted with set_heart_beat(). The object must be fixed and recompiled.

If the definition file of an object contains heart_beat() and the object also is defined to be

living, the function this_player() will return this_object() (that is, your non-living code

is now considered a player because it is living and has a heart beat!). If the object is non-

living (because enable_commands() wasn’t called in the object’s create() or reset()),

this_player() will return 0. Following is an example:

object owner;

create()

{
owner = this _player();

set_heart_beat(1);

}
heart_beat()

tell_object(owner, "You hear your own heartbeat\n");

}

In the preceding example, the heart beat is set when create() is called (when the object

is first loaded) and owner is set to this_player(), whose value is @ because you did not call

enable_commands() in create(). When heart_beat() is called, owner (in this case no one) is

told You hear your own heartbeat. Had enable_commands() been called in the create() (or

reset() for LPMUDs of version 2.4.5 or LPMUDs running in compat mode), the object
would have told itself that it hears its own heartbeat!

270 Part Ill © MUD Programming Guide

1DDQVOHOOOHHHHIOOHOOHHOHHHDIDVWPWGHOIDIDD BVVBO9IOOS

id()
int id(string str)

The id() lfun enables an object to identify itself. If the string str matches a given id for

the object, then a non-zero value is returned; otherwise, id() returns @. Following is an

example:

id(str)
{

return str == "sword" |! str == "Excaliber";

}

In the preceding example, if the value of str is equal to sword, or if the value of str is equal

to Excaliber, the result of the check of equivalency is returned. (The result would be @ for

either check if non-equivalency were found, 1 for equivalency. Only one of these checks

needs to be true for a non-zero value to be returned by id(), signifying that the string str

IS a valid id for the object.)

e

implode()
string implode(mixed *arr, string del)

implode() concatenates all strings found in array arr, with the string del between each

element. Only strings from the array are used.

explode()
string implode(mixed *arr, string add)

The explode() efun concatenates all strings found in array arr, placing the string add

between them. The value of add may be "", which is an empty string. If the array arr

contains integers as well as strings, only the strings will be used for concatenation.

Following is an example:

string str;
Str = imploded ({"Mackon,. “1S, Fodden=})5. hy

The preceding example would set str to Macron is Fodder, the string value returned by

implode(). Following is an example:

Stiring) Siti

str = implode(({"Omni", "potence"}), "");

This example illustrates the use of an empty string for implosion. In this case, str is set

to Omnipotence.

index()
int index(mixed arr, mixed target, int offset, int increment)

index() isan efun. The first parameter arr also can be an array. The position of target inside

arr is returned by index(). If target is not in arr, index() returns -1. When offset is

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 271
20 OOE ®@89DO9GHGOHOB9HHHHHHOOVIHHHHHOOOVHOGE BOSE

specified, index() will search from offset to the end of arr, be it a string or an array. When
increment is specified, the search is done in steps of increment.

Ifarr is a string, index() searches for the first instance of the character target as if the string
were an array of characters. (Conceptually, that’s precisely what a string is!)

inherit_list()
string *inherit_list(object ob)

The inherit_list() efun returns a string array of all files that are inherited in the specified

object ob. If no argument ob is given, then inherit_list() will use this object() by default.

e 6

init()
void init()

init() isan lfun whose main purpose is to facilitate the set up of add_action(), singularly

or en mass. init() is called when two objects move near one another, provided that one

of the objects is marked as living.

Basically, if object A is living and moves into object B, init() is called in object B and

this_player() is set to return a pointer to object A. For every living object c inside of object

B, init() is then called in object A with this_player() set to return a pointer to object c.

Then, again for every living object c inside of object B, init() is called in object c with

this_player() set to return a pointer to object A. Finally, init() is called in object A with

this_player() set to return a pointer to object B.

Simply put, when a living object enters another object (in which are located several more

objects), each object present calls init() in the object it perceives to be the newcomer to

the set of objects now present. Following is an example:

init()

add_action("drop_thing", "drop");

add_action("“get_thing", "get");

}

The preceding example is how a sample of the init() in player.c might look. It sets up two

commands, get and drop, with the appropriate functions to search when either is invoked.

©

input_to()
void input_to(string func, int flag)

input_to() isan efun that enables the next line of user input to be sent to the local function

func as an argument. The input line will be passed directly to the function func without

being modified in any way. The function func will not be called immediately. Execution

of func will not begin until the current execution from which input_to() was called has

terminated and the player has given a new command. If input_to() is called more than

once in the same execution, only the first call has any effect.

272 Part IIl_ #® MUD Programming Guide
9D@OOOOHHHGHD OOOOH HGS 9B BSODPOGHDHDVOVOS SS IBBIOOVOG

If the optional argument f1ag has a non-zero value, then the line entered by the player will

not be echoed, preventing both the originator of the line as well as any would-be snoopers

from seeing it. Following is an example:

input_to(“more_file”);

The preceding example will, upon terminating the function in which input_to() was

called, send the next line of entered text to the function more_file.

interactive()
int interactive(object ob)

The interactive() efun returns 1 (true) if the object ob is connected to a socket.

interactive() will return @ if the object ob is not connected to a socket. Following is an

example:

object ob;

ob = find _player("“stringray");

if (ob && !interactive(ob)) destruct(ob);

The preceding example declares ob, sets ob to a pointer returned by calling find_player ()

on the player whose name is stringray and, if a pointer to the object that is the player

named stingray is found and that object is not interactive, destructs the object pointed

to by ob.

intp()
int intp(mixed arg)

intp() is an efun that returns 1 if arg is an integer, and @ if it isn’t.

living()
int living(object ob)

The living() efun returns 1 if ob is a living object, and 0 if it isn’t.

log_file()
void log file(string filename, string msg)

log_file() isan efun that writes a message msg to a log file filename. The file will be opened,

written to, and then closed (if the file already exists, it will be appended to; if not, the file

will be created and then appended to.) All log files are located in /1og.

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 273
3®OVSDSSHOHGHHOQDDGHOGGHGHOOOHHGGHHGHHOHOHHOOHOOHOOOOOOOD ty ite ON ety 78

long()
void long(string str)

long() is an lfun that enables an object to write a description of itself.

The string argument str is optional. If str is specified, then the description of that
argument is printed. For str to be accepted, it must return true when passed to id().
Following is an example:

long()
-

short();

write("An obsidan orb. It seems to absorb all light.\n");
return 1;

}

In the preceding example, assuming that a function short() is defined and that orb is a

valid id for the object, when 1long() is called it will call short() and then write An obsidian

orb. It seems to absorb all light. (with a carriage return as specified by \n).

lower_case()
string lower_case(string str)

The lower_case() efun converts all characters in str to lowercase and then returns the new

string. Passing non-string values to this function causes it to fail. It is recommended that

you perform a check to ensure that something is a string by using stringp() before passing
it to lower_case(). Following is an example:

Stun stirs

str = "ABSOLUT DRINKS TOO MUCH. \n";
Lf(estringpiastion))mstina= Lowercase Sim)

The preceding example declares str, sets str equal to ABSOLUT DRINKS TOO MUCH. \n, Checks

to see that str is a string and, if so, converts it to lowercase characters. The value of str then

is set to what lower_case() returns, that being absolut drinks too much. \n.

Is()
void ls(string filename)

The 1s() efun lists files in filename. The string filename may be expressed as a full path and

cannot contain periods or spaces.

274 Part IIl_ ¢ MUD Programming Guide
GOOOOHHHHHHHHDVOOHGHHHOHG DOG OHGHGHOGHDWVOGOGHHOHDVISOQOH

map_array()
mixed *map_array(mixed *arr, string func, object ob, mixed extra)

map_array() is an efun that returns an array holding the items in arr mapped through a

call_other() to the function func in the object ob. The function func in object ob is called

for each element in arr with that element as a parameter. An optional second parameter

extra is sent in each call if specified.

The value returned by the call_other() (ob->func(arr[index], extra)) replaces the

existing element in arr. If arr is not an array, then map_array() returns @.

member _array()
int member_array(mixed item, mixed *arr)

The member_array() efun returns the index of the first occurrence of item in arr if an

instance is found. If not, then -1 is returned. Following is an example:

member_array(“morpheus", ({ "morpheus", "sly", "elric" }));

The preceding example would return a value of 0, as morpheus is the first element (which

always has an index of @) in the indicated array.

mkdir()
void mkdir(string dirname)

The mkdir() efun creates the directory dirname. The string dirname should be expressed as

a full path and may not contain spaces.

move_object()
void move object(object item, object dest)

Move_object() is an efun that moves the object item into a destination object dest.

Following is an example:

move_object(clone_object("/obj/torch.c"), this_object());

The preceding example clones a torch and moves it into the object in which move_object()
was Called.

next_inventory()
object next_inventory(object ob)

The next_inventory() efun returns a pointer to the next object that is located in the same

inventory as ob. If the object ob is moved by move_object(), then next_inventory() will

return an object from the new inventory.

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 275
2O2 BOO QOQ®DSOGHHOVS HH HGHGHHHHOOHHOHHGHHOOOOOOOE So A ee

notify _fail()
void notify _fail(string str)

The notify_fail() efun stores str as the message to be given in the event of an error when
a verb (the command both players and wizards type) is used. This message will be given
instead of the standard default error message what?. If notify_fail() is called more than

once, then only the last call is used.

You should call this function inside of a local function you have defined. Commonly,
notify_fail() is called just before the return statement.

object_time()
int object_time(object ob)

The object_time() efun returns the time in seconds since January 1st, 1970, at 0.00, when

the object was created.

objectp()
int objectp(mixed arg)

The objectp() efun returns 1 if arg is an object, and @ if it isn’t.

pointerp()
int pointerp(mixed arg)

Pointerp() is an efun that returns 1 if arg is an array, and 0 if arg is not an array.

present()
object present(string str, object ob)

The present() efun searches the inventory of the current object (this_object()) as well as

the inventory of the environment of the current object. The search is conducted for an

object that id’s to the string str and a pointer to the object is returned if such an object

is found. Present() will return @ if no object that id’s to str is located.

Optionally, the first argument, str, may be given as an object instead of a string. (It is

recommended that you use an object for the first argument if possible, as present ()

searches more efficiently when given an object for the first parameter.) Additionally, a

second optional argument, ob, which is the environment to search rather than the current

object’s inventory or environment, may be specified. If ob is given, present () searches only

the inventory of ob, not its environment. Following is an example:

object item;
item = present("circlet", this_player());

276 Part Ill © MUD Programming Guide
1DOHODOHHHHSHHHD OOS OSHS DSB VHOOP GSS HS BVOOVSOSOE

This example searches the inventory of this_player() for an object that id’s to circlet. If

an object in which id() returns 1 for the string circlet is located, then present() returns

a pointer to it. If not, present returns 0. The object variable item is then set to the value

returned by present().

previous_object()

<2

object previous_object()

previous object() is an efun that returns an object pointer to the object that did a

call_other() to the current object, if any. If no object did a call_other() to the current

object, then @ is returned. If, however, the call_other() originated within the current

object itself (this_object()), or an object destroyed by destruct(), the value returned by

previous_object() will be a. Following is an example:

test_if_me()

{
object prev;
if((prev=previous object()) && prev != this_object())

log_file("ILLEGAL", file_name(prev) + " attempted "+

MUONCAl tes tlt measur:
return 0;

}
return 1;

}

The preceding is asample function test_if_me(). Init, previs declared as an object variable.

The first expression in the if() statement uses parentheses to ensure that what is within

them (the setting of prev to the object pointed to by previous_object()) is processed first.

Once the first expression of the if() is evaluated for truth or falsehood (truth being prev

having been set to a pointer to an object, and falsehood being prev having been set to 0),

the second expression of the if () statement is evaluated, provided the first expression was

true. The second expression checks to see if the object pointed at by prev is not the same

as this_object(). If both expressions of the if () statement are true, then the clause (which

is inside the braces) is evaluated. Init, 1og_file() is used to write the filename of the calling

object prev and states that it attempted to call test_if_me!. Evaluation of the function

test_if_me() then ends, returning a value of 0. In the event that one expression in the if ()

statement is false, however, the then clause is ignored and test_if_me() terminates,

returning 1.

The preceding example integrates a number of coding steps you have already seen

(along with a few you haven’t seen yet) to demonstrate the order in which code is

executed, as well as the use of previous_object(). Don’t be alarmed if it doesn’t quite

make sense to you yet; the more examples you are exposed to, the clearer they will
become.

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 277
SOOSSSSBOSOSG9SGS 9G 98 999999 HS00899S9990OOOOOOE

process _string()
string process_string(string combinestring)

The process_string() efun processes a string by replacing specific syntactic patterns with

what is returned when the pattern is interpreted as a function call description. Syntactic
patterns are in the following form:

@@function[:filename][j}arg1;arg2....\argN]@@

This is interpreted as the following call:

filename ->function(arg1,arg2,..., argN)

process_string() will not recurse over returned replacement values. If a function returns

another syntactic pattern, that description will not be replaced.

All such occurrences in combinestring are processed and replaced if the return value is a

string. If the return value is not a string, then the pattern will remain unreplaced.

Note that both the filename and arguments are marked optional with the brackets and

that the brackets are not included in the actual pattern. Following is an example:

foo(string str)

{
GeCUGhe ROO tS tit nia

}
func()

{
write(process _string("@@foo;BA@@")+"\n");

}

In this example, the func prints the string FooBAR to the screen called.

process_string() isa seldom used (if ever) efun, as its functionality can be duplicated with

less confusion (and a lower chance of errors) in other ways.

Following is a potential use of process_string():

write("@@query_name:/obj/monster#123@@ is following you!\n");

Assuming that /obj /monster#123 exists in the game and has the name Kare1le, the string

written to the screen would be Karelle is following you!. If /obj /monster#123 does not exist,

then an error will be displayed.

process _value()
mixed process value(string calldescription)

The process_value() efun gets the replacement of a syntactic pattern. The pattern is of the

following form:

function[:filename][j|arg1|arg2....{argN]

278 Part Ill ¢ MUD Programming Guide
DOOOOOVHHHGHHHHDHOSHHHOHHHH VIVO PO OSO HVE

This is interpreted as the following call:

filename->function(arg1,arg2,..., argN)

Unlike process_string(), the value returned by process_value() can be of any type.

As with process_string(), you should note that both filename and arguments are marked

optional with the brackets and that the brackets are not included in the actual pattern.

query_auto_load()
string query_auto_load()

query_auto_load() is an Ifun that should be defined in any object that needs to be cloned

and moved to the player when he or she logs. Typically, the following rules are observed

with auto-loading items:

@ Auto-loading items should not have weight.

@ Auto-loading items should prevent players from dropping them.

@ Auto-loading items should be loaded into memory before the player logs in, or

else the player will not be given a copy.

@ Auto-loading items should not be usable player objects such as weapons, armor,

or healing objects.

query_auto_load() must return a string in the format filename:arg. The filename is the

definition that will be cloned while the arg is a string that will be sent as an argument to

the function init_arg(), which is local to the object whose definition file is filename. The

arg can be an empty string. init_arg() is where the object to be auto_loaded does its own

internal configuration.

The concept behind this function is that a player can have a curse or a badge of

membership that is always with him or her, even if he or she quits. On many LPMUDs,

the need for this has been outdated for some time. Where query_auto_load() has not been

outdated, you may find that it works differently from what has been previously described,

as someone may have tweaked the driver to make query_auto_load() more useful. Also, the

preceding guidelines mentioned for auto-loading items is a general set of rules that have
a wide range of variance from MUD to MUD.

query_host_name()
string query_host_name()

The query_host_name() efun returns a string that is the name of the machine on which the

game is running.

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 279
GS2SOSBOSSOSOSOSSSS0OO8OOO9G9O0S08 899000008 QO06

ie &Y-

query _idle()
int query_idle(object ob)

Query_idle() is an efun that returns the number of seconds for which a user has been idle.

query _ip_name()
string query_ip_name(object ob)

query_ip_name() is an efun that returns the ip-name of the machine from which object ob
(presumably a player or other user) is logged in. An asynchronous process called hname,
which runs in parallel with the game driver, is used to find out ip-names. If any failures
occur while query_ip_name() is locating the ip-name for ob, then the ip-number is returned
instead.

query_ip_number()
string query_ip_number(object ob)

query_ip_number() isan efun that returns the ip-number of the machine from which object
ob (presumably a player or other user) is logged in.

query _level()
int query _level()

Generally, all living objects must define the query_level() Ifun to returna non-negative,
non-zero value. On modern LPMUDs, query_level() may be limited to use only with
monsters and players, as wizards generally are not considered players, today. Historically,
query_level() played an important part in LPMUD security operations, as levels were the
differentiating factors among players (and wizards were then considered players). In the
past, an apprentice wizard was usually level 20, a full wizard with a castle was usually level
21, and higher-level wizards had significantly higher levels to match their inflated egos.

query_load_average()
string query_load_average()

The query_load_average() is an efun that returns a string indicative of the workload of the
game driver in the form of 0.68 cmds/s, 29.40 comp lines/s. Both the average number of
commands per second and the average number of compiled lines per second are
computed based on the number of commands and compiled lines (respectively) handled
over the last 15 minutes of game time.

280 Part Ill @ MUD Programming Guide

1DO]OQOOOHHHGHHHHYOOO
HHHGHHDD 9OVDPOGHBD BIIOSIBSBSOOOS

query_name()
string query_name()

query_name() is an lfun that returns a string consisting of a designated name for the item

being queried. All objects handled or seen by players must have aname so that they may

be easily referenced by players. The choice of the name that players will see affects what

the object should id to, as well as an object’s name should be enough for the player to

figure out what to type to manipulate the object. Following is an example:

query_name() { return "wand of riches"; }

An object that has the preceding example in it should probably id towand and possibly wand

of riches because most people who see a wand of riches would want to enter get wand to

procure it. At the very least, a player should be able to enter get followed by the name of

the item.

query_prevent_shadow()
void query_prevent_shadow()

The query_prevent_shadow() lfun, when defined in an object, simply disables the capability

of the object to be shadowed. This function is only used on LPMUD versions 3.0 or more

recent that are running in either native or compat mode. Following is an example:

query_prevent_shadow() { return 1; }

query_snoop()
object query_snoop(object snoopee)

query_snoop() is an efun that returns an object pointer to the object (presumably a user)

is snooping another user snoopee. Generally, use of this function is restricted in some way,

as high level wizards often decide they do not want the extent of their voyeuristic

tendencies to be known.

query_verb()
string query_verb()

The query_verb() efun returns a string that is the name of the current command, or @ if the

function in which it is called is not executing from a command. query_verb() often is used

to enable the add_action() of several commands to the same function. Following is an

example:

init()

add_action("close_door", "close");

add_action("close_door", "shut");

close _door(str)

Chapter 13 © Essentials of LPC Programming (on LPMUDs) 281
SS SG 9928 9SSGSG0 9988 9OGOOOHOOOOHOHHO9O000OOOOE

AWS A AS

if (str != "door") return;
write("You " + query_verb() + " the door.\n" Ne
seal_door();
RECUR Mes

}

The preceding example enables the add_action() of two commands, close and shut, to the
function close_door(), in init(). When close_door() is called by a player entering either
close OF shut, close_door() checks to make sure that the argument supplied to the verb is
door. If the argument supplied is not door, close_door() terminates evaluation, returning
9. (A return statement with no value behind it is the same as returning 0.) Otherwise,
evaluation continues within close_door().Ifthe player entered shut door, the player would
see You shut the door. If the player entered close door, the player would see You close the
door. A local function seal_door() (not shown here), presumably where the code that
actually makes the door look and be closed exists, is then called to make the event occur,
after which a value of 1 is returned, terminating evaluation.

random()
int random(int num)

The random() efun returns an integer value in the range of @ to num-1. Following is an
example:

UI iis

n = random(5)

This example returns a number ranging from 0 to 4.

read_bytes()
string read_bytes(string filename, int fromchar, int tochar)

read_bytes() is an efun that returns the contents of the file filename. If the optional
arguments fromchar and tochar are given, then the function returns the contents from byte
fromchar to (and including) the byte tochar. If fromchar is specified but tochar is not,
read_bytes() will read from fromchar until it has read the last byte in the file. If fromchar
is negative, read_bytes() will read the file backwards, treating the last byte in the file as if
it were the first.

There is a maximum limit to the number of bytes that can be read. This limit is defined
when the game driver is compiled and is normally 50,000 bytes.

read _file()
string read_file(string filename, int startline)

read_file() isan efun that reads a line of text from filename and returns it asa string. The
argument startline is the line number of the file filename that you want to read into a

282 Part Ill * MUD Programming Guide

1 OHWOOGHOHHOHGHHVOGHHHHHDDVIWSPHGGOGHHDI VHVSSH SOG ISE

string. The filename argument may be expressed-as a full path. If you do not specify a

start line or startline is a non-positive integer value, then read_file() willreturn 9. If you

try to read past the end of a file (startline is greater than the last line number’s value, for

example), again, then read_file() will return 0.

remove call out()
int remove _call_out(string func)

The remove _call_out() efun removes the next pending call_out() for function func in the

current object (this_object()). remove_call_out() returns the time left in the call_out()

before it was removed. If the function func has not been set for a call_out(), then -1 is

returned.

rename()
void rename(string from, string to)

rename() is an efun that renames the file from to the name to. If from is a file, then to may

be a file or a directory. If from is a directory, then to must be a directory. If to is an already-

existing directory, then from will be placed within that directory and maintain its original

name. Upon successful completion of rename(), 0 is returned. In the event of an error, 1

is returned.

reset()
void reset(int arg)

reset() is an lfun that is called internally by the game driver approximately every 45

minutes. For LPMUD versions 2.4.5 (or older) and LPMUD versions 3.0 (or more recent)

that are running in compat mode, reset() is called when an object is loaded, with an

argument of @ being passed to it. After the initial reset(), this function will be called by

the game driver periodically, but with an argument of 1. LPMUDs running in native mode

do not bother passing an argument to reset (), as there is no need to distinguish between

the first call to reset() and any successive calls due to the existence of the lfun create().

If a room creates objects within its reset (), it should check to make sure that there aren’t

already similar objects present before creating more of them. This avoids creating multiple

duplicates of the same objects.

restore_object()
int restore_object(string filename)

The restore_object() efun restores the values of all variables for the current object from

the file filename. It is permissible to express filename as a full path. It is not, however,

permissible to have a period or spaces in filename. Restore_object() returns 1 if it

Chapter 13 © Essentials of LPC Programming (on LPMUDs) 283
& & >SSSSSS29SSSHS OHSS 0OHGOGOOOOOOHGHOSOOOHHOHHHOHOOOOHOGé

successfully restores the variables saved in filename. Variables that have the type modifier
static will not have been saved if save_object() has been called to save the variables to
filename and, thus, will not be restored.

If inheritance is used in the object in which the restore_object() function is called, it
might be possible that a variable will exist with the same name in more than one place.
When restoring, only the last occurrence of such variables will be restored when multiple
entries are encountered. To avoid this problem, a unique name should be used on every
non-static global variable within an object. Variables local to functions are not saved by
save_object() nor are they restored by restore_object(), as the variables exist only in the
course of function evaluation.

rm()
void rm(string filename)

The rm() efun deletes or removes the argument filename. filename may be expressed as a
full path. it is not legal to have spaces in filename.

rmdir()
void rmdir(string dirname)

rmdir() isan efun that removes or deletes the directory dirname. dirname may be expressed
as a full path and may not contain spaces.

save_object()
void save_object(string filename)

The save_object() efun saves the values of all non-static global variables of the current

object (this_object()) in the file filename, which may be expressed as a full path. Variables

local to functions will not be saved by save_object(), as they exist only during the

evaluation of functions. It is not legal to have periods or spaces in filename. For successful

completion of a save_object() call, the object attempting to perform the call must be able

to write to the directory in which it is trying to save. Save_object() returns 1 upon

successful completion of the save. It returns @ if it encounters an error.

say()
void say(string str, object ob)

The say() efun sends a message str to all players in the same object. If the optional

argument ob is specified, then str is sent to all players except the object specified by ob. If
ob does not point to a player, then it will be ignored.

284 Part Ill © MUD Programming Guide

OBVWQOOSHHOHDHOHOHGGHHHSHHVOSHGHHGHHIVDSGOGPSISIVIWVIGOE

say() behaves differently if called from heart_beat ¢). In this case, the string str is sent to

all objects in the same environment of the object that calls say(). Following is an example:

init()

add_action("speak", "say");
add_action("speak"); add_xverb("'");

}
speak(str)

ship (¢ iSheie ica ewan
say(this _player()->query_name() + "“ says: " +

capitalize(str) + "\n", this_player());

return 1;

}

The preceding example enables the add_action() of two commands, say and ', to the

function speak(). The ' commandisan xverb, sono space is needed between the command

and its argument. When the appropriate verb or xverb is used, speak() is called. speak()

terminates its evaluation, returning 0, if no argument follows the given command. As per

the preceding, assuming your name to be Kensho and you entered say LPC makes IRCII look

like tinker toys, every player, except you, who is in the same object that you are in, would

see Kensho says: LPC makes IRCII look like tinker toys. The speak() function then would

terminate execution by returning 1.

set_bit()
string set_bit(string str, int num)

The set_bit() efun returns a string of the results of setting bit num string str. The original

string in which the bit is set is not modified.

set_heart_beat()
void set_heart_beat(int flag)

The set_heart_beat() efun enables or disables the calling of heart_beat() by the game in

the current object (this_object()). If flag is 1, then the game will call heart_beat() every

two seconds. If flag is 0, then the game will cease to call heart_beat() until instructed to

do so by another set_heart_beat(1) call. You should always set_heart_beat(®) when the

heart_beat() is not needed, as this helps reduce system overhead.

set_light()
int set_light(int lightlvl)

An objectis, by default, dark. It can be set to a state of not being dark by calling set_light().

The integer argument lightlvl controls how bright the lighted object is. On most

LPMUDs, this makes absolutely no difference, as an object is either lit or it isn’t. However,

LPMUDs with a high degree of sophistication may alter how much of the long() of an

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 285
DOBSQBOSSOHOHOOHOSOSGHOOHHOO SO OGHSHHOOOHHHHHOHSOOQOHOOE

object you see based on the intensity of light. Calling set_light() with a non-positive
integer value darkens the object—the more negative the number, the darker the object is
considered to be.

The environment surrounding a lit object also is considered to be lit. The value that
set_light() normally returns is the sum total amount of light given off by all objects in
one location that radiate light.

Note that the value of the argument light1v1 is cumulative. If you call set_light(1) inan
object three times and then call set_light(0) in the same object, then the returned value
on the set_light() you just performed would be 3. This is true of negative values for
set_light(), as well.

shadow()
object shadow(object ob, int flag)

shadow() is an efun that works in two specific ways: as a means of applying a shadow to
ob, and as a means of querying whether ob is shadowed.

Shadows themselves do not have an environment. Simply put, it means you cannot go
into a shadow, put something else into a shadow, or put a shadow into some other object
the way you can with all other objects. (This is why they are called shadows!)

Instead, you must apply a shadow to an object. Once you apply a shadow to an object,
there are only two ways to remove it: call destruct () on the shadow or call destruct () on
the object that is being shadowed.

Once you apply a shadow to an object, it is used to redirect calls to functions. If object
is applied as a shadow to object 8, then all call_other()s made to object B are redirected
to object A and processed within it. If object A does not define the function to which the

call_other() was made, then the call_other() is passed on to object Bas if everything were

normal. In fact, the only object that can call_other() into object B once it has been

shadowed, is the shadow itself (object A). Object B (the object to which the shadow was

applied) cannot even make a call_other() into itself without first being routed through
object A, the shadow.

Before you can apply a shadow to an object, it must be prepared. The shadow must be

defined in a file somewhere and be able to be initialized via a call_other() because

applying a shadow to an object consists of making one object “be the shadow” of another

object. The way you do this is to write a local function in a file that will become the

shadow. The function needs to expect an object for an argument. Once this is done, write

any functions that you want the shadow to affect. In those functions, the code you use

should be adequate to the task of changing the behavior of the functions you want to

affect. Note, however, that a function of type nomask will not be affected if the function

is redefined in a shadow, as declaring a function to be of type nomask will disallow shadows

from affecting it. Following is an example of a shadow definition file:

286 Part II] ¢ MUD Programming Guide

1DGDOOOHHGHOHHH D9 VOOH GSH DF VQOHPHDDBIISOSOSOS!

ay
ae ne

object owner;

start_shadow(ob)

{
owner = ob;

shadow(owner, 1);

}

long() { return; }

short() { return; }

The preceding example is a working object made by a user’s shadow. A global object

variable owner is declared to keep track of who is to be shadowed. The function

start_shadow() is used to apply this shadow to a user. Once applied, what is normally

returned by the Ifuns 1ong() and short() in the user to which this shadow is applied will

be altered. Instead of seeing a short and long description of the user when you look at him

or her, you will see nothing. This shadow renders the object that has been shadowed

invisible to people who can’t locate him or her with wizard tools. To start this shadow,

you would use such a wizard tool to make a call_other() to the function start_shadow()

in the preceding object, passing it a pointer to the object that is the user you want to

shadow. Note the syntax of the shadow() statement. The second argument is a 1. The 1

indicates that shadow() is to apply a shadow to someone. Had the value of the second

argument to the shadow() function been a @, shadow() would not have applied the shadow

to the specified user, but rather, would have returned a value to indicate whether or not

the specified user was shadowed.

That leads you to shadow()’s second use. Calling shadow(ob, @) Causes shadow() to return

a pointer to the object that is shadowing object ob. If ob has no shadow, then shadow()

returns 0. Following is an example:

object ob, shad;
ob = find player("“zamboni");
if (ob && (shad = shadow(ob, @))) destruct(shad);

This example illustrates the use of shadow() for the purpose of locating a shadow on a user.

Here, ob is set to a pointer to the object that is the player “zamboni.” If ob exists and there

is ashadow applied to ob, then shad is set to a pointer to the object that is the shadow, after

which destruct() is called on shad.

On most LPMUDs, an object that defines a local function query_prevent_shadow() toreturn

1 cannot be shadowed at all.

shadow() only works on LPMUD versions 3.0 or more recent that are running in either

native or compat mode.

Chapter 13 © Essentials of LPC Programming (on LPMUDs) 287
OVOOOOSE 29 2SDHOGSHOSHDHHHHOHOOVHOHGHOHO OOO OOOE

short()
string short()

short() isan lfun that all objects must have. This function returns a string, which is a short
message that describes it. Invisible objects will return 0. Following is an example:

short() { return "A socratic teacher.\n"; }

shout()
void shout(string str)

The shout() efun sends a string str to all users and returns 1.

sizeof()
int sizeof(mixed *arr)

The sizeof() efun returns the number of elements in the array arr.

slice_array()
mixed *slice_array(mixed *arr, int from, int to)

slice_array() is an efun that returns an array that is a slice of the argument array arr,

starting at the index from and ending at the index to. As the index to the first element in

an array is 0, neither from nor to can be negative values. If arr is not an array or either index

(from or to) is out of bounds (that is, it’s less than zero or greater than the numerical value

of the last index), 0 is returned.

sscanf()
int sscanf(string str, string fmt, mixed arg1, mixed arg2, ..., argN)

The sscanf () efun parses a string str using the format fmt. fmt can contain strings separated

by *d and %s. Every %d and %s corresponds to its respective variable, arg1, arg2, to argN.

sd indicates that the value to be scanned out should be treated as an integer, while %s

indicates that the value should be treated as a string. Sscanf() returns the number of

matched %d and %s. If a matching fails, the variable to which the match would have been

set is left unchanged. Following is an example:

string str, what, whom;

str = "get all from corpse’;

if (sscanf(str, "get %s from %s", what, whom) != 2)

write("Get <what> from <whom>?.\n");
else

Write (@eYOUrGOtes t Widitet = thom. fowhom U!\n")%

288 Part Ill ¢ MUD Programming Guide

1DOWHWOOHOHHOHDHOOGHHGHHHHOOOOHHHHHHDHVOOPHSOSISE

The preceding example illustrates the use of sscanf() to do two things at once: determine

whether the string str matches the pattern fmt, and if so, scan pieces of the format

(symbolized by %s, here) into variables. The string str is set to get all from corpse. sscanf ()

then compares str to get %s from %s. If it finds that there isa match between the solid parts

in the format (that is, the words get and from), then sscanf() puts each %s, in order from

left to right, into the string variables wnat and whom that were given as arguments, again,

from left to right. sscanf () then returns a value. Since, in this case, there should be a match,

the value returned should be equal to 2. If it doesn’t equal 2, Get <what> from <whom>? is

written to the screen. Otherwise, You got all from corpse! will be written to the screen.

stringp()
int stringp(mixed arg)

The stringp() efun returns 1 if arg is a string, 0 if it isn’t.

strlen()
int strlen(string str)

The strien() efun returns the number of characters in string str.

tail()
void tail(string filename)

tail() isan efun that, when called, prints out the end of the file filename. filename should

be specified as a full path and may not contain spaces. There is no specific number of lines

that are printed to the screen. Instead, amaximum of 1000 bytes is printed. tail() returns

1 after successfully tailing filename.

tell_object()
void tell _object(object ob, string str)

The tell_object() efun sends a message str to object ob. If ob is not a user, str will be

intercepted by the local function catch_tel1() to be manipulated and acted upon by the

object, assuming that catch_te11() is defined in the object. tell_object() returns 1 ifit was

able to send str to ob, or @ if ob could not be located.

tell_room()
void tell _room(object ob, string str)

The tell_room() efun sends a message str to all objects in the room ob. If the objects that

receive the message str are not users, str will be intercepted by the local function

catch_tel1l() to be manipulated and acted upon, assuming that catch_te11() is defined in

them. tell_room() returns 1 if it was able to send str to ob, or 0 if ob could not be found.

Chapter 13. ¢ Essentials of LPC Programming (on LPMUDs) 289
SBSGSLGSSSOGGGHGOVSIOHSHOGHHHL IH GHGHOHOGOHHOYOOOHOHOOOOOHOOO

Optionally, ob can be given as a full path of the room to which tell_room() should send
the message str.

test_bit()
int test_bit(string str, int num)

The test_bit() efun returns 1 if bit num is set in string str. If bit num is not set in str, 0 is
returned.

Each character contains six bits. This means that a value between @ and 63 can be stored
in one character, as 2*6 == 64. The starting character is the blank (""), which has a value
of 0. The first character in the string str is the one that has the lowest bits. Following is
an example:

test bit(" 2°, 5);

The preceding example returns 1 because _ stands for the number 63 and, therefore, the
sixth bit is set.

Bitfields (a string consisting of bits that are set) are cryptic and ugly to look at, but they
are perfect for storing a large amount of status information (status meaning like the
variable type status, either off or on). You can store the equivalent of six different status
variables in one character of a string using bitfield techniques! Bitfields, however, are not
for the faint of heart and are rarely used in LPC simply because they are not easy to work
with.

this_interactive()
object this_interactive()

this_interactive() is an efun that returns a pointer to the object that initiated current
execution chain. If it was not a user that initiated the current execution chain, then 0 is
returned. call_out() and heart_beat() are two ways in which an execution chain could be
initiated without an interactive user having been responsible. In such a case, @ would be
returned.

this_interactive() should not be used as a replacement for this_player(). If you try this
and a call to command() is executed, the value returned by this_player() will change,
reflecting the current player, while the value returned by this_interactive() will not.

® @

this_object()
object this _object()

this_object() is an efun that returns the object pointer of the current object.

290 Part Ill # MUD Programming Guide

OO WWQOOHHGHHWIOGPHHHGHSHHHOOHHOOHI IIIS IPSHOSIISIIGE

®@

this_player()
object this_player()

this_player() isan efun that returns the object pointer that represents the current player,

that being the player who issued the command that initiated the current execution.

This function does not work in acall_out().If you need to keep track of who this_player()

was when acall_out() was initiated, then use a global variable that is declared as an object.

time()
int time()

The time() efun returns the number of seconds since January 1st, 1970, at 0.00 hours.

unique_array()
mixed unique_array(object *arr, string separator)

The unique_array() efun groups objects together for which the separator function returns

the same value. arr must be an array of objects. If arr is not an array of objects, then it will

be ignored. The separator is not, itself, a function call, but rather the name of the function

upon which you want to base the order of your grouping. The function indicated by

separator will be called only once in each object contained in arr. unique_array() returns

an array of objects of the following form:

({Same1:1, Same1:2, Same1:3, ..., Same1:Y ty)

({Same2:1, Same2:2, Same2:3, ..., Same2:Y }),

({SameX:1, SameX:2, SameX:3, ..., SameX:Y }),

)

The following example returns an array of arrays, holding pointers to all player objects

grouped together by their player levels:

mixed *objarr;
objarr = unique_array(users(), “query_level") ;

users()
object *users()

The users() efun returns an array of all interactive users.

Chapter 13 © Essentials of LPC Programming (on LPMUDs) 291
SOOE OLQOSQVSHHHHOHLHDHHHOHHHOOHVHHHOHOHOOOHVOO

write()
void write(string str)

The write() efun writes a message str to the current player (this_player()). The argument

str also can be a number, which will be translated to a string. 1 is returned if write() was

successful, and 0 if it failed.

®

write_bytes()
int write_bytes(string filename, int line, string text)

write_bytes() is an efun that writes the string text on the specified line in a given file

filename. filename should be given as a full path and may not contain spaces. If the value

of line is negative, write_bytes() writes text on line number line counted backwards from

the end of the file. If the absolute value of line is greater than the number of lines in

filename, then nothing is written and 0 is returned. Write_bytes() returns 1 for success and

returns 0 if it fails during execution.

write_bytes() overwrites data in the target file, unlike write_file(), which merely

appends to the file.

write_file()
int write _file(string filename, string str)

write file() isan efun that appends the string str to the file filename. filename should be

given as a full path and may not contain spaces. 1 will be returned if write_file() was

successful, and @ will be returned if it fails.

Coding Rooms
Having seen comments, expressions, syntax, and the most common efuns and lfuns, you

now should be ready to begin working on an area. The first step is to draw a simple map

on a piece of graph paper so that you have some idea of what the area will look like. After

you do this, you can begin to put the area’s characteristics down into code.

As you know, you can use inheritance to incorporate all the aspects of one object into

another. The primary use for inheritance is to allow wizards of all levels to inherit default

objects and configure them for their own use. With the case of building rooms, the file

/room/room.c usually is what is inherited to give the object you are working with all the

aspects of a generic room. The /room/room.c file contains all the definitions for the way in

which a generic room works, inclusive of necessary variables and functions, which you

should use to configure your rooms. Table 13.7 shows the variables that you can use.

292 Part Ill ¢ MUD Programming Guide

DDQOLOHHHHHGDHLVOHHHHHGSSHHD VVIOS VP SIDD VIP BP SSSISSGOS

Table 13.7. Common global variables used to configure rooms.

Variable Intended Use

long desc Holds the long description of a room, returned by long(). The

long_desc variable is a string variable.

short_desc Holds the short description of a room, returned by short(). The

short_desc variable is a string variable.

dest_dir Dest_dir is a string array of destinations followed by the direction that

must be typed to go in that direction. dest_dir (short for

destination direction) is used to enable add_action() for the exits

available in a room.

Following is an example of a complete, working room:

/ *

* Filename: /players/tarod/hell1/main.c

* Code by Tarod@RealmsMUD

if
inherit "room/room.c";

reset(arg)

{
stip ((edeyo) }) feche(Ulelals /* Saves some processing time */

yoke evel mnet(i)))E

short_desc = "Avernus Main";
long_desc = "You follow a path that twists and turns around "+

"dead and rotting trees.\nAhead in the distance, "+
"you catch a glimpse of the opening of a dark "+

"“cave.\nA shiver runs up your spine as a cold "+

"breeze passes over your (now\nshivering) body.\n";

dest_dir = ({

"players/tarod/hell1/hell1.c", “south",

"players/tarod/hell1/room®@.c", “north"

});
}

The preceding example is a simple room. The first thing it does is inherits /room/room.c to

incorporate all the aspects of a room into itself. reset ()then is defined so that the object

is initialized when loaded. The first thing reset () does is check to see whether it was passed

as an argument by the game driver. If reset () did receive an argument, the reset () defined

previously terminates execution by returning. Why? Because the preceding information

needs to be configured only on the first reset, which has no argument. Otherwise, it would

be reconfigured every time reset() were called, wasting processing time.

The preceding room is marked as 1it by a call to the efun set_light() with an argument

of 1. If this had not been done, the room would have been dark by default.

The short description, which is a string value that will be returned by short() in /room/

room.c, is then set. Note that on most LPMUDs, the short description is what is seen when

in brief mode. As a result, try to make your short descriptions informative and unique so

that they can be used to differentiate rooms equally as well as long descriptions.

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs)

Next the long description is set. The long description is the string that will be returned

when long() is called. Note the use of the preceding string addition, to keep the code clean-

looking. This creates a little more work for the compiler when it loads an object, but as

the compiler must only do it once, it is insignificant. Maintaining the readability of the

code is more worthwhile than saving a few CPU cycles by eliminating the string addition

in the preceding example.

Last, an array of destination files and direction commands is created. This array is set up

by add_action() calls in init() of the room. You inherited /room/room.c, where init() has

already been defined for you. The array, dest_dir, should be in the form of ({ filename,

command, filename, command }). The filename given should be expressed as a full path. room.c

usually will support up to 10 exits, sometimes more. Once the preceding room is loaded,

entering south while in the room will move you to /players/tarod/hell1/hell1.c, while

entering north will take you to /players/tarod/hell1/roomQ.c.

The check for an argument in reset() need not be done on LPMUD version 3.0 or more

recent versions that are running in native mode, as create() is used to initialize the object.

Code for such an LPMUD might look like the following:

ik

* Filename: /players/tarod/hell1/main.c

* Code by Tarod@RealmsMUD

si |
inherit "room/room.c";

create()

{
set_light(1);

short_desc = "Avernus Main";
long_desc = "You follow a path that twists and turns around "+

"dead and rotting trees.\nAhead in the distance, "+

"you catch a glimpse of the opening of a dark "+

"cave.\nA shiver runs up your spine as a cold "+

"breeze passes over your (now\nshivering) body.\n";

dest_dir = ({
"olayers/tarod/hell1/hell1.c", "south",
"players/tarod/hell1/room@.c", "north"

ae
}

As you can see, the preceding two examples differ only in the name of the function used

to initialize them, and by one if() evaluation.

Okay, so now you have one room. How do you link it to other rooms so that one may walk

from one to the other? That’s simple. You already defined the exits in your first room using

dest_dir, but right now, those files don’t exist because you have not yet written them. So,

edit a file whose path matches one of the paths you defined as a valid exit in the room you

just wrote. Then write the room as you normally would, setting light if needed, entering

a short description by setting short_desc, entering a long description by setting long_desc,

and setting up exits in dest_dir. The setting of dest_dir is what will link your rooms.

293
IDS OSSSO 9S OSS S9SSGG59 999 G9GS999908 9090050000800

294 Part Ill © MUD Programming Guide

1DDHOOVOELHHHHYD GOO SOHGHHV I VDIIOHSGOHISVOE

This next code sample is an example of a room that is linked to the previously discussed

room (/players/tarod/hell1/main.c) by means of dest_dir.

Ire

*

Filename: /players/tarod/hell1/room@.c

Code by Tarod@RealmsMUD

ey
inherit "room/room.c";

reset (arg)

{

}

ship ((EXpte) 3) Iecheinnls

set_light(1);

short_desc = "A damp, dark and dingy Cave. os

long_desc = "You enter a wide cave, which narrows and grows "+

"darker to the east.\n";

dest_dir = ({
"players/tarod/hell1/main.c", "south",
"nlayers/tarod/hell1/room1.c", “east”

});

If you were standing in the room defined by previous examples and you entered north, you

would be moved to this room. Here, dest_dir is defined to take you back to the room you

just came from when south is entered. In this way, rooms are linked so that a user can

move among them.

Now you want to have some monsters in the room and to put some things on your

monsters. This is done by first writing and debugging any definition files of objects you

want to use in your room, and then putting the code to create them into your room.

Following is an example of a room, that clones and moves a monster to itself on reset():

[*

*

dy

Filename: /players/tarod/hell1/room1.c

Code by Tarod@RealmsMUD

inherit "room/room.c";

reset(arg)

{
object monster, money;

if (!present("shadow")) // If there's not a monster whose name is "shadow",

// we'll make one.

{
monster = clone _object(“players/tarod/monsters/shadow");

money = clone_object("/obj/money");

money ->set_money(random(2000));

move object(money, monster);
move_object(monster, this_object());

}

Thang) mrecuirnts

yeh dleNelahet(a]))s

short_desc = "A damp and echoing chamber, filled with shadows";

long desc = "You step cautiously into a damp and shadow- "+

Chapter 13 © Essentials of LPC Programming (on LPMUDs) 295
> PO DOGLQS DOSGOOHHHDLVVOSHOOHHOVIDHHHGHHHOOIHHGHOHOGHGHOOHHOO

"filled chamber.\nRough-hewn stone walls "+

"disappear into inky blackness as\nyour eyes "+

"scan their coarse contours. Shadows flicker "+
"in\nthe dim light of a lone torch.\n";

dest_dir = ({

“players/tarod/hell1/room0", "west",

"players/tarod/hell1/room2", "northeast"

});
}

This example works like other rooms. It differs from what you’ve seen so far in that

two object variables, monster and money, are declared and then set to point at two objects

cloned from the files /players/tarod/monsters/shadow.c and /obj/money.c, respectively. A

call_other() to the function set_money() is made to the object pointed to by money in order

to set the value of the money randomly within a range of @ and 1999. The object pointed

to by money then is moved into the inventory of the object pointed to by monster. The object

pointed to by monster is then moved to the inventory of this_object() (the room), with

its inventory. After this, the set up of the room continues as normal. You should note that

all of the monster and money configuration is done before the if (arg) check, so that at each

call to reset(), including when the object is loaded, a monster with money on its person

will be cloned and moved to the room if there isn’t already one there.

Coding Monsters
Monsters keep players on the go for experience and weapons. Without monsters, there is

generally little to do on a MUD unless the MUD is strictly a player-killing MUD or a chat-

based MUD. So, you need to know how to code monsters.

Like rooms, monsters have a generic file that can be inherited and configured. The file

/obj /monster.c should be inherited and then configured for use by you. Typically, a series
of functions local to /obj/monster.c are used to configure a monster. This differs from

configuring rooms, which uses variables, not functions.

Table 13.7 lists the standard functions you can use to configure a monster.

Table 13.7. Standard functions for configuring monsters.

function_name Intended Use

set_ac(num) Sets the monster’s armor Class (how well it avoids being hit)

to the integer value of num.

set_aggressive(arg) If arg is non-zero, makes the monster automatically attack

someone who enters the room in which it is located.

continues

296 Part Ill © MUD Programming Guide

DGDODOOOHHHYIHVOVOHHHHH
G WV WSDHHGDD GS BBS OGOII BD BIVVIVIOe

Table 13.7. continued Lindh Otek ie nes ee. a a

function_name Intended Use

set_al(num) Sets the monster’s alignment to the integer value of num.

Alignments work in ranges. The specifics of the range is

MUD-dependent. However, commonly, the more evil the

monster, the more negative the alignment value. The more

pure/good the monster, the more positive the alignment

value.

set_hp(num) Sets the monster’s hit points to the integer value of num.

set_level(num) Sets the monster’s level to the integer value of num.

set_long(str) Sets the monster’s long description to the string value of

str.

set_name(str) Sets the monster’s name to the string value of str.

set_race(str) Sets the monster’s race to the string value of str.

set_short(str) Sets the monster’s short description to the string value of

Sith:

set_wc(num) Sets the monster’s weapon class (how well it can hit things

and how much damage it can do) to the integer value of

num.

What follows is a complete, working example of the monster cloned by the sample room

above (/players/tarod/hell1/room1.c).

pe

* Filename: /players/tarod/monsters/shadow.c

* Code by Tarod@RealmsMUD

2
inherit "obj/monster.c";

reset (arg)

{
Paresee(ang) /* Makes sure the reset() function

that was inherited gets called

too. This can be done with

init() or any other function you

need to define that already is

defined in something you inherit.
a mn MS, i de eo

set_ac(20);

set_aggressive(1); /* Automatically initiates attack */
set_al(-800); fe NABRNE EN AL, 2}

set_hp(1100);

set_level(20);

set_long("Hovering on the edge of your vision, in the "+

"deepest recesses of darkness,\nthis creature "+
"blends with the absence of light...and life.\n"

5

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 297
> SBOOGLODIHHOOGGHOVHYHHHOHOHGHOOIHHGOHGOHOOOHOO a fm Rr ths 23
Oo Ooe

set_name("shadow");
set_race("demon");

set_short("A dark, sinister shadow");
set_wc(17);

}

That’s all there is to it! Assuming that your monster file loads properly, you can simply

clone it and move it, within the reset() of your room, as you’ve already seen. The

preceding example is a very simple monster. Monsters can have more options set in them

than what you see here. As a player, you are aware that monsters sometimes talk, move,

pick up things, and drop things. These monster capabilities are very MUD-specific. Each

MUD does it a little (and sometimes a lot) differently. Thus, there is no catch-all example

I can provide to show you how such things are commonly done. I strongly suggest that

you work with simple monsters until you get a feel for it. Once you’re comfortable with

them, you might move on to monsters of increasing complexity and realism. Your

sponsor, or an elder wizard, should be able to help you tackle the undertaking.

Coding Weapons
Weapons serve two purposes in the game. While players would like to think that the sole

purpose for the existence of weapons is to provide them with something with which they

can bash monsters (or players!), wizards generally think of weapons as something with

which their monsters can bash players. When a weapon is wielded, the weapon_class

(which represents how accurate the weapon is and how much damage it can add to its

wielder’s base damage) of the weapon is added to the player’s base weapon_class. Not every

monster has the physical attributes (such as claws, represented by a high weapon_class in

the monster file) that make hand-to-hand combat easy. As a result, some monsters that

you may create should have weapons. A normal man (created as a monster) with a

weapon_class of 17 is ridiculous. It is more realistic to give said man alow weapon_class (such

as 5) and provide him with a sharp sword or a big ax that adds to his weapon_class. You

must, of course, make the man wield the weapon you provide him with.

As with rooms and monsters, there is a generic weapon file, /obj /weapon.c, that should be

inherited and configured to make a weapon. Also, as with monsters, the weapon should

be cloned and then moved to a monster, much like the money you saw in a previous

example. Once the weapon is in the inventory of the monster, you can make the monster

wield it with a call to command().

Table 13.8 lists the standard functions you can use to configure a weapon.

Table 13.8. Standard functions for configuring weapons.

function_name Intended Use

set_alias(str) Sets up an alias str to which the weapon will id in addition to

its name.

continues

298 Part Ill © MUD Programming Guide

OBB WOQOOHHGHHHOHHOGOGHHHSHI HS VOOSHHHIIVWGOPOIGIOE

Table 13.8. continued

function_name Intended Use

set_alt_name(str) Sets up an alternate name str to which the weapon will id in

addition to its name and alias (if any).

set_class(num) Sets the weapon’s weapon class (how much it adds to the

capability of a living object to hit things and how much

damage it can add) to the integer value of num.

set_long(str) Sets the weapon’s long description to the string value of str.

set_name(str) Sets the weapon’s name to the string value of str.

set_short (str) Sets the weapon’s short description to the string value of str.

set_value(num) Sets the weapon’s value (how much it’s worth when sold to a

shop) to the integer value of num.

set_weight (num) Sets the weapon’s weight to the integer value of num.

Following is an example of a complete, working weapon:

{pe

* Filename: /players/tarod/weapons/dagger.c
* Coded by Tarod@RealmsMUD

oa
inherit "/obj/weapon.c";

reset(arg)

{
ameset (arg!) /* Makes sure the reset() function

* that was inherited gets called
* too. This can be done with

* init() or any other function you

* need to define that already is

* defined in something you inherit.

7 |
af (arg) return;

set_alias("old dagger");

set_alt_name("an old dagger");

SOuLCI ASST 5))i,

set_long("The dagger is covered in rust, but still looks "+
"functional. \n"

);
set_name("dagger");

set_short("An old dagger");

set_value(200);

set_weight(1);

}

As you can see, configuring a generic weapon is a simple matter of providing the right

information to the functions that exist for the purpose of setting up a generic weapon.

Once you are sure your weapon works properly, you may want to give it to a monster. If
you wanted the shadow (monster) you saw in a previous example to have this weapon,

you would edit the definition file of the room which clones the shadow and add the
following lines:

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 299
QOSHGHOOHOHHS DOGHGHOOLIVHHHGHSHOOVHOHHOHSOOHOOOSE

object weapon;

weapon = clone_object("/players/tarod/weapon/dagger.c");

move _object(weapon, monster);

command("wield dagger", monster);

You would add the preceding lines just before the monster is moved into the room.

As a player, you are aware that there are weapons that do special types of damage, and have

seen weapons that occasionally make special hits on targets of their own volition.

Creating these types of weapons is MUD-specific—few MUDs do it the same way. Thus,

I will not elaborate on the how-to’s of it as there is no common example to which I can

point and say “this is typical.” If you want to create such weapons, you should ask your

sponsor or an elder wizard how it is done on the MUD on which you are coding.

Coding Armor
Armor is used to protect its wearer from harm. If armor is worn, the armor_class (how

protective the armor is) is added to the wearer’s base armor_class. Not every monster has

the physical attributes (such as a chitonous exoskeleton, represented by a high armor_class

in the monster file) that make avoiding damage easy. As a result, some monsters that you

make should have armor. A normal man (created as a monster) with an armor_class of 10

is ridiculous. It is more realistic to give said man a low armor_class (such as 1) and provide

him with a leather jerkin ora shield that adds to his armor_class. You must, of course, make

the man wear the armor you provide him with.

As with rooms, monsters, and weapons, there is a generic armor file, /obj/armor.c, that

should be inherited and configured to make armor. Also, as with monsters, the armor

should be cloned and then moved to a monster, much like the money you saw in a

previous example. Once the armor is in the inventory of the monster, you can make the

monster wear it with a call to command().

There are different types of armor that can be created and used. This represents different

armor types, such as shields, helmets, gauntlets, rings, boots, suits of mail, and so on.

Monsters and players can wear only one of each type of armor at a time. Different types

of armor can be worn simultaneously, however. Table 13.9 lists standard types of armor.

Table 13.9. Standard armor types.

Armor Type Represents

amulet An enchanted amulet or a pendent worn about the neck.

armor A suit of armor covering the torso and, possibly, the legs and/or

arms.

boots Covering for the feet, obviously.

gloves Covering for the hands, obviously.

helmet Covering for the head.

shield A shield worn on one arm.

300 Part II|_ * MUD Programming Guide

DOOD] QOOOHHGHHGDOOGOHHY
HH VI DOGOPDHGHPD GD BBO OBGOGIISBBOBGOGOo*

Table 13.10 lists the standard functions you can use to configure armor.

Table 13.10. Standard functions for configuring armor.

function_name Intended Use

set_ac(num)

set_alias(str)

set_long(str)

set_name(str)

set_short(str)

set_type(str)

set_value(num)

set_weight (num)

Sets the armor’s armor class (how much it adds to the capability

of a living object to avoid damage) to the integer value of num.

Sets up an alias str to which the armor will id, in addition to its

name.

Sets the armor’s long description to the string value of str.

Sets the armor’s name to the string value of str.

Sets the armor’s short description to the string value of str.

Sets the armor’s type to one of the six available types: amulet,

armor (Or armor depending on how it’s spelled on the MUD),

boots, gloves, helmet, shield.

Sets the armor’s value (how much it’s worth when sold to a

shop) to the integer value of num.

Sets the armor’s weight to the integer value of nun.

Following is an example of a complete, working armor file:

Hfis3

* Filename: /players/tarod/armor/leather.c

* Coded by Tarod@RealmsMUD

oul
inherit "/obj/armor.c"; // May need to be spelled armor

reset (arg)

::reset(arg);

Li ard ere turns

Setvac(2 air

set_alias("armor"

// on some MUDs.

Makes sure the reset() function

that was inherited gets called
too. This can be done with

init() or any other function you

need to define that already is

defined in something you inherit.
ee eat? 0b or ee

)5
set_long("While old and disheveled looking, you think that"+

"this leather armor\nis better than none at all!\n"

);
set_name("armor"
set_short("Grimy,

set_type("armor"

set_value(200);
set_weight(1);

)3
old leather armor");

)3

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 301
YVOSDOSSOOSS8OOS9 G0 G8 9 9G9SG99 908 990SS090G6008 9006

Once you are sure your armor works properly, you may want to give it to a monster. If you
wanted the shadow (monster) you saw in a previous example to have this armor (an

absurd notion, how does a shadow wear armor?), you would edit the definition file of the
room that clones the shadow, and then add the following lines:

object armor;

armor = clone_object("/players/tarod/armor/leather.c");

move_object(armor, monster);
command("wear armor", monster);

You should add the preceding lines just before the monster is moved into the room.

More sophisticated MUDs require armor to havea size. On such MUDs, a large man cannot

wear small armor. This is a MUD-specific hack that few MUDs do the same way. Thus, I

have no common example to give you and will let you ask your sponsor or an elder wizard

to point you in the right direction if you need to deal with this.

Coding Containers
Players can only carry so much on their person. Gold, weapons, armor, and just about any

other object they can pick up has weight. Containers help to organize a player’s inventory

and usually allow the player to carry a bit more. To make a container, a generic container

file, /obj/container.c, should be inherited and configured.

Table 13.11 lists the standard functions you can use to configure containers.

Table 13.11. Standard functions for configuring containers.

function_name Intended Use

set_alias(str) Sets up an alias str to which the container will id in

addition to its name.

set_alt_name(str) Sets up an alternate name str to which the container will id

in addition to its name and alias (if any).

set_long(str) Sets the container’s long description to the string value

Orsti:

set_max_weight (num) Sets the maximum weight the total weight of the

container’s contents can be. If putting an object into the

container will cause this maximum to be exceeded, the

player cannot put the object into the container and is told

that the container is full.

set_name(str) Sets the container’s name to the string value of str.

set_short(str) Sets the container’s short description to the string value

of str.

continues

302 Part II|_ © MUD Programming Guide

DDD®HHOOOHOHHGHIDHVODHGHHHSI OGD SSVSVIO®

Table 13.11. continued

function_name Intended Use

set_value(num)

set_weight (num)

Sets the container’s value (how much it’s worth when sold

to a shop) to the integer value of num.

Sets the container’s weight to the integer value of num. This

is how much the container weighs regardless of the total

weight of its contents.

Following is an example of a standard, working container object.

{le

* Filename: /players/tarod/obj/bag.c

* Coded by Tarod@RealmsMUD

a,
inherit "/obj/container.c"

reset(arg)

{
rireset(arg); /

if(arg) return;

set_alias("bag");

set_alt_name("bag");

set_max_weight(21);

set_name("large bag");

set_short("A Large Bag"

Ce, ee, Sa ie,

d

Makes sure the reset() function

that was inherited gets called

too. This can be done with

init() or any other function you

need to define that already is
defined in something you inherit.

ys
set_long("This is an extremely large bag, capable of "+

5
set_value(4Q) ;

set_weight (2) ;

}

"holding quite a bit.\n"

On MUDs that are programmed to deal with armor sizes, containers usually will have a

size, as well. In such a case, a player will not be permitted to put a /arge object into a small

or medium container. The code for this, as with armor size code, is MUD-specific and is not

dealt with in this book. You should consult a high level wizard or your sponsor to learn

how to deal with sizes.

Coding Treasure
Treasure objects are provided for two reasons: as a reward, similar to money, for undergoing

an ordeal and, often enough, as something required for completion of a quest. Not all

treasure is quest material. Most treasure is simply an object with can_put_and_get(),drop(),

get(), id(), long(), short(), query_name(), and query_value() defined in it.

Chapter 13 © Essentials of LPC Programming (on LPMUDs) 303
2Oe@ O®DOLOLOPSHHGHYOHVOOEHDHGHHHHHOHHHGHOHHHOOHOOO SQ:

mae SOS GH?

query_value() is not always used. On some MUDs it may be called something else, but

there will be a function that is MUD-specific that should return an integer value

representative of how much an object is worth when sold to a shop. If the function is not

query_value(), ask a high level wizard or your sponsor what the appropriate function is,

or find and read the code to a shop to see what function it makes a call_other() to for

determination of the value of an object that is being sold to it.

Following is an example of a treasure object. Note that no inheritance has been made.

|pee

* Filename: /players/bleys/treasure/diamond.c

* Code by Bleys@AfterHours

|
int worth; // Holds the value of the diamond when it is

// determined when this object is loaded.

reset(arg)

{
Teal) sec uinns

worth = random(5000)+1;

}

can_put_and_get() { return; }

drop() { return; }

get() { return 1; }

id(str) { return str == "diamond" |; str == "flawless diamond"; }

long()

{
write("You see a diamond that must be as large as your fist. "+

"It appears to be\nflawless and must be worth a "+

"fortune! \n"

);
return 1;

}

short() { return "A flawless diamond"; }

query_name() { return "diamond"; }

query_value() { return worth; }

Many MUDs do not have generic treasure objects to be inherited. As you have learned how

to configure generic objects, I will leave it to you to see if there is a file /obj/treasure.c

that can be inherited. If you find such a file, simply read through it, paying attention to

the functions that begin with set and to what types of arguments they expect. Once

you’ve done that, edit a file, inherit /obj/treasure.c, and write a reset () function in which

the available set functions are used appropriately.

304 Part Ill # MUD Programming Guide
HOO HOOSGOGOHIVDHOEGHHOHHHGD VQOGSHOIPOIVSOVOGOHS®

Attaching Your Area to the Main Map
By now, you have seen enough examples to create an area without much of a problem.

In addition, you have been exposed to the grammar (comments, operators, efuns, and

lfuns) and syntax of LPC. You should be ready to create an area using this work as a

reference for most, but not all, of your questions.

When you have completed your area, you should have another wizard of any level (high

level wizards are best—but it’s hard to get their attention) look through the area and

critique it. Accept the criticism and then go back and modify your area according to the

suggestions made. The wizard should be looking for typing errors in the area’s descrip-

tions, as well as possible flaws or bugs in the code.

Once the area is clear of bugs, typing errors, and any suggestions you want have been

implemented, you should talk to your sponsor or an elder wizard about attaching your

area to the main map and opening it for use by players. A target date should be set and

an announcement on a board (or repeated shouts, though this is annoying) should be

made so that players know something new is coming online. It is up to you whether you

disclose the area’s location or keep it to yourself so that players can just happen upon it.

Try to avoid choosing a place on the game map that doesn’t fit the style of the area you

have built. Placing an area that is a grassy knoll into the middle of a village of 10,000 is

not good. Try to keep in mind the feel of the location to which you are attaching.

Watching for Undocumented Features
When you write objects, you need to keep in mind the mentality that the players in the

game usually have, that being, most want something for nothing. While most LPMUDs

penalize players who cheat, there is a fine line between cheating and utilizing an
“undocumented feature,” a.k.a., a bug.

To illustrate the kind of thinking I’m talking about, you should know that early LPMUDs

were riddled with bugs. In the early 1.3.3 versions, a player could give -100 coins to John,

and assuming that John was in the room with the player, John would lose 100 coins and

the player who gave him negative coinage would gain 100 coins.

Similarly, in my days as a player, | encountered armor that I could purchase from an

armory at SO coins and take just down the street to a shop and sell for 200 coins. Obviously,

I spent some time running back and forth from one to the other and kept what I knew to

myself so that word would not spread and the feature would stay a bit longer.

Give all logical possibilities some thought when you write code. If you simply write it and

put it into play without giving it a second thought, you are likely to miss something that

some clever player might be able to anticipate you missing. The result could be ugly.

An example of this would be linkdead players that turn into statues. Some MUDs turn a

player into a statue when linkdeath (disconnection without quitting) occurs. All the

Chapter 13 ¢ Essentials of LPC Programming (on LPMUDs) 305
DDBCHVOOS I 9GSSH OOOO SY GGGSHS SLI 9G9HHHSOHO9HGHHH9OO9 SOO

player’s items are left on the statue, but the statue can be picked up. There have been

instances of players being sold to shops for quick cash (at which point they end up in the

back room of the shop and can get at everything that is in the shop). This means the player

who sold the statue gets a small amount of cash, and the player who reconnects finds

himself sitting in the midst of a hoard of useful things.

On that same note, many LPMUDs have a trash bin—some object that destroys objects

that can’t be sold to a shop. There have been instances of players throwing statues into

these bins so that unique (one of a kind) equipment that is on the linkdead player will be

put back into game play in 45 or so minutes.

Think through your code. Watch for undocumented features.

Stones Left Unturned
As every LPMUD is different, obviously I cannot cover every possibility. I deliberately

chose to avoid addressing some things that are common to most LPMUDs for one reason

or another. Here, I explain why.

e

Mappings
Ido not address the variable type mapping or any efuns that pertain to mappings. Mappings

are similar to arrays. Frankly, anything you can do with mappings you can do with arrays.

Certain people within the core of the MUD world have argued that mappings are more

efficient than arrays. Others have tested the theory and found mappings to be less efficient

than arrays. As the efficiency advantage is debatable and mappings are redundant

anyway, I opted to omit them from this chapter. If you want to learn about mappings, you

should try to find documentation on declaring them as well as documentation on the

following efuns: mappingp(), mkmapping(), m_delete(), m_indices(), m_sizeof(), m_values()

euids
Three efuns, export_uid(), getuid(), and seteuid(), are used to handle security-intensive

code (such as code that needs special permissions to read, write, or do otherwise restricted

things). Don’t worry about UID security for the most part if you are using generically

inherited objects. By the time you are working with custom objects, you should bea high

level wizard and know how security works on the MUD on which you code (every MUD’s

security differs to some extent). Due to the wide variance in MUD security code, I have

elected to leave UID security unaddressed. LPMUD versions 2.4.5 or older don’t have UID

security anyway. Versions 3.0 or more recent have it and generally use it. LPMUDs

running in compat mode have it but often elect not to bother with it.

306 Part Ill * MUD Programming Guide
1DBBOVOHHHGIGHH 9 GHH0GGSOS 8998S SGSE89 9 S98 SS 9S9S06'

floats
I do not address the variable type float or any efuns that pertain to it. floats are variable

type that can have a decimal values. While floats are useful in C or C++ coding, I have yet

to find a use for floats in LPC that is worth the time expenditure made to enable LPC to

support floats.

parse_command()
parse_command() is an efun that is used to parse strings. Almost no one uses it. sscanf() is

much cleaner and easier to use. I suggest using sscanf() rather than wasting time with

parse_command().

tracing Functions
The efuns trace() and traceprefix() are almost never used. Both are cumbersome, CPU-

eating debugging tools that next to no one bothers with. Thus, they also have been

omitted from this chapter.

Summary
In this chapter, you have been exposed to the essentials of being a wizard. You know what

the common, essential wizard commands are, and you have seen how they are used. You

know what a MUDlib is and where, in general, things are located within it. Lastly, you

have been exposed to the code that wizards use to create the “magic” within the game.

Using the tools you now are aware of, and the knowledge you've recently gained, you

should be ready to build a castle using LPC on a MUD where you have obtained the title
and responsibilities of wizard.

CHAPTER

PROGRAMMING N@@s
By Chris Stacy

The virtual reality of the MOO is created by programmers, who create

and program the objects that make up the MOO. Everything in the

MOO, including characters, the rooms they inhabit, and the things

they pick up and play with, are objects.

This chapter teaches you how to create new objects, modify existing

objects, and program the objects to do what you want.

If you’re not already a programmer in some other language, don’t

worry. LambdaMOO has been designed to be easy to learn to program.

The Elements of MOO
MOO stands for MUD Object Oriented, which tells you that the way the

system works is oriented around objects. All the objects in the MOO

interact with each other to create the virtual reality. Each object is

programmed to do certain things, such as be picked up or moved

around, be looked at, and so on. The human characters who are

playing on the MOO are represented by player objects, which are

programmed to (upon command from the player) pick up things, say

things to other players, move around, and so on.

308 Part Ill ¢ MUD Programming Guide

919DBOOOHGH HGH 99OSHHHHGS GOSS 9HGBS FB GOOVSSGO9S6

Every object is owned by some other object (generally a player). Player objects are

generally owned by themselves.

Object Numbers
Every object has a number, called it’s object number, or objnum for short. When referring

to an object by its number, you use the pound sign (#), followed by the digits. So, object

number eleven is written as #11. The MOO automatically assigns each new object its own

number (you don’t get to pick them). An object’s number never changes—you can refer

to any object in the whole MOO by its number.

Objnum is pronounced pretty much like it looks: ahh-b-j-num.

Verbs and Properties
Every object has some verbs. Each verb is a unit of behavior, a little program that specifies

one way that the object interacts with the other objects on the MOO. To make objects

behave the way you want, you define and program verbs into them.

A verb has a name, hopefully something that brings to mind what it does. For example,

a particular verb on a bouncy ball might be called bounce.

Sometimes in discussions people write the name of the verb preceded by a colon (:), as

in :bounce. In the examples here, it is just written as bounce (unless it’s in a place where

you are really supposed to enter the colon).

Every object has properties. A property is a slot in the object that remembers some piece

of information. Every property has a name. For example, an object that represents a room

might have a property called dark that remembers whether it happens to be dark inside

the room. A room also might havea property called exits that contains information about

ways to exit the room. The piece of information that a property remembers is called the

property’s value, Collectively, objects remember all the states of the virtual world in their
properties.

In programs, properties are referenced by affixing a period (.) to the front of the property
name. For this reason, when speaking aloud, programmers often pronounce a property
name as “dot something.” For example, “I’m not sure what dot dark on rooms is for, but
I read somewhere that it has something to do with whether you can see anything when
you're inside the room.”

Chapter 14 ¢ Programming MOOs 309
© DOLQQSlLVSHSHOHHHOVYIVSOHHHHOONYIHOHGHOGOHOVHHHHSHOOHOO HOHE

Object Classes
The MOO is made up of objects of all kinds. Every object is patterned after some other kind

of object, called its parent. An object has only one parent. When you create an object, you

specify which object is the parent, and the MOO creates a new object that’s like a copy

of the parent, except that it has its own object number. A parent object can have as many

children objects as needed or necessary.

The new object (the child) has the same properties as its parent, and it also has the same

verbs. So, at least at first, it looks and acts just like its parent. You might want your child

object merely to be a copy of its parent object; or, you can make new verbs and properties

on the child object, specializing it to make it more interesting than its parent.

Each object has a chain of ancestors: its parent, its parent’s parent, and so on. An object’s

class is the type of object it is—which branch of the family it’s from.

Suppose that there is an object that represents a bottle of floor wax. You could use the

bottle of floor wax object as a parent, and create a new object called shimmer. When talking

about the ancestry of the shimmer object, you would say that “Shimmer is of class bottle of

floor wax.” Further suppose that you then took Shimmer as a parent, and made new object

called Improved Shimmer. The new Improved Shimmer is a member of the bottle of floor wax

family, and also a member of the Shimmer family, because those are both ancestors. You

could say that Improved Shimmer was a member of either of those classes, depending on how

specific or how general you wanted to be.

MOO is a single-inheritance object system, which is a fancy way of saying that every object

has exactly one parent, and is only related to other objects along one branch. For example,

a particular object cannot simultaneously be a room and a player, nor can it be both a floor

wax and a dessert topping.

The Database
The database is comprised of all the objects in the MOO. The original objects that existed

when the MOO was started for the very first time (before all the characters, rooms, and

other things are created) are called the core database objects.

Your Client
The program that you use to connect to the MOO is called your client (for more

information about clients, see Chapter 10). The most simple client is a program called

telnet, available on most computers. However, telnet really doesn’t do anything for you

besides provide a raw sort of connection. In fact, if you’re just using telnet, people will say

that you don’t have a client, and they will advise you to get one.

310 Part Ill ¢ MUD Programming Guide
DOOD WDOOQIHOHHGHHDWOVSHOHOHHSHVQPOGSHSIHVIVOPOS

Without a client (better than telnet), nothing prevents the text you type and the messages

from the MOO from coming out all at once and getting mixed together on your terminal.

It won’t be mixed up as far as the MOO can tell, but it will appear jumbled on your screen,

and will be very difficult for you to keep track of. If you’re going to program the MOO, it’s

highly recommended that you use a good client.

The Server
The server is the computer program underlying the MOO. It maintains the Database,

keeping track of all the objects. The server takes each command sentence that you type,

figures out what part of the database it applies to, and invokes the appropriate objects,

causing their verbs to execute by interpreting the MOO programming language.

You don’t program the server; it’s not written in the MOO programming language, and

you can’t change the way it works with MOO programs. Rather, the server is what makes

MOO programs (verbs) go!

To use the MOO, you connect to the server with your client, and send the server

commands, such as get rock. The server parses your commands, figuring out which verb

you’re using and the objects to which you are referring, and invokes your commands upon

those objects. The objects, in turn, may direct the server to send you back some kind of
message, such as You pick up the rock.

Basic Objects
The MOO starts out with few very basic objects, and then programmers come along and

create more objects that are like those, but adding new properties and verbs, and giving

the MOO its own unique feel. If every object on the MOO is the child of some other object,

where does it all begin? The answer is an object called the Root Class, which has no parent,
and from which all other objects are descended.

Most things that you can pick up and do things with are “generic things.” All rooms are

based on the generic room, and player objects are, of course, based on generic player. The
generic container is just like a generic thing, except that it understands the idea of containing
other things (that is, it has verbs for putting things inside it, looking inside it, and taking
them out).

The Root Class object is object #1, and the other basic generics have low numbers, too.
Rather than memorizing their numbers, however, you can refer to them with the
following special notations:

$root_class The Root Class

$player Generic player

$room Generic room

Chapter 14 ¢ Programming MOOs 311
OOHHVQLQV\VWOSHHOOOOIVDHHHOHOOOVDHHOHHOHOOOOOOOE

$thing Generic thing

$container Generic container

If you’re speaking aloud to someone, you would pronounce the dollar sign and say, “dollar
room” to refer to $room.

The word “generic” indicates that these objects exist only for the purpose of having

children, and are not to be used directly. For example, you would never walk into the

generic room. Instead, you would make children of it to be rooms that players will move

around in. “Generic” indicates an abstract concept, rather than a specific instance.

Player Classes and Programmer Bits
When you connect to the MOO, you interact with its virtual world of objects through your

player object. Your player class determines many of the capabilities that you will have. For

example, the most basic player class, $player, does not have the verbs needed to create new

objects.

The $builder class has commands for creating new objects, but lacks the verbs needed to

write programs. If you just want to build objects (but not invent new kinds of objects),

then you just have to be a $builder.

To bea MOO programmer, you will need to be a $prog, or some class descended from there.

To become a programmer, contact one of the wizards on your MOO. In one wizardly

action, they will transform you into a programmer: your programmer bit will be turned

on, and your player class will automatically be adjusted to be a descendant of $prog, if

needed.

About Player Classes
On most MOOs, there are a variety of player classes to choose from, and you'll have to ask

around to find out which one your player should be. Player classes determine, to some

extent, how you appear to look and act to other players, and certain ways that other things

behave towards you. On some elaborate MOOs, there are lots of personal taste choices to

be made in this area. Note that even though player object owns itself, some other player

owns your player Class (your parent). This gives that person some control of your player,

so you should only switch to a player class owned by someone you trust. You change your

player class by using the @chparent command, described later in this chapter.

About Programmer Bits
In addition to being a $prog object, you also will need a programmer bit. Every player object

on the MOO has a property called programmer, which records whether you have a

programmer bit. The property holds the answer to the yes-or-no question, “Is this player

312 Part Ill © MUD Programming Guide

1OOBWVOOHOHHGHHHGOWSOHSOIHIVIVSOVHSOH

allowed to write programs?” When an attempt is made to write a program, the server

checks your programmer property to see if you have the right to do that. If the answer is

false, programming will be denied, but if programmer contains a true value, then the server

will allow you to program. Only wizards can turn programmer bits on and off, using their

special @programmer command.

Before You Begin Programming
You're going to want to find a quiet virtual room on the MOO where you can work without

a lot of spam. If you already have your own room, go there. Otherwise, there’s probably

some fairly quiet room nearby. Explore a little and look for someplace that’s not too busy

with other players talking and playing.

Creating and Customizing Basic Objects
Most MOOs have a rich collection of many different types of objects. There usually are

many children of the most useful and popular objects. As a programmer, you can add new

verbs and new properties to a child, thus making the child into a new kind of object. But

if you don’t need new types of behavior from the object, you can simply change the values

of existing properties, such as the name and description.

To create an object, you first have to decide which class of object you have in mind.

Suppose that you want to make a ball to bounce around. Like most things, the appropriate

parent would be $thing.

@create $thing named ball

You now have ball with object number #2361 and parent generic thing (#5).

Note the object number that comes back (#2361 in this case).

On your MOO, the preceding command example will get you some other objnum than

#2361, so in this example, you'll have to remember to substitute the real numbers. Except

for the few basic objects that exist on every MOO (such as #1), there’s no way to predict

what the object numbers will be.

@create parent class named name

@create parent class named name,name,name,...

The @create command creates new objects. You specify who the parent shoul@be, and

what the resulting object should be named. The server responds by creating the object,

putting it in your inventory (the list of things you are holding in your hand), assigning the

new object an objmun, and telling you about it. (By the way, there’s no limit to the

number of things you can hold in your inventory.)

The inventory command (which can be abbreviated inv) tells you which things you’re

holding.

Chapter 14 ¢ Programming MOOs 313
DOVHGSSSSSSSSH6 9G 90S 9S 9GSGSH900 8999999000 90008

inventory

Carrying:

ball

Every object has a name, which is just something convenient by which you can call it. The

preceding object is named ball. But there might be more than one ball in the whole MOO,

and they could all be named ball, so how can you tell them apart? The answer is that while

object names are not unique, objnums are. You can’t tell them apart by name, but they will

always have different objnums. When you command the server to do something with the
ball, it will try to find an object with that name. If you’re only holding one ba11, or if

there’s only one ball in the same room as you, that’s the one the server will pick.

Aliases
An object can have multiple names, called aliases. If you wanted to be able to call the object

either ball or fun ball, you could have said:

@create $thing named ball,fun ball

This could be a little tricky, though. Suppose that you issued the command once with just

ball, and then once as in the preceding code with the multiple names. Then you would

be holding two objects, both named ball, but one of them is also known as fun ball.

If you just say, for example, drop bali, the server will complain:

I don't know which "ball" you mean.

However, drop fun ball would work. Now there’s a fun ball in the same room with you,

and you're still holding the other ba11. If you say drop ball at this point, the server would

pick the ball you’re holding, because it’s closer than the one that’s on the virtual floor.

In general, having two objects of the same name in the same room at the same time is

inconvenient, and you'll find yourself resorting to objnums in such circumstances.

Object Numbers Always Work
You can only refer to objects by their name if they’re in the same room as you (or if you’re

holding them). But you can always refer to any object that’s anywhere on the entire MOO

by its objnum, as in the following:

drop #2361

Dropped.

Renaming Objects
The names of your objects are just for your convenience and you can change them

anytime you want using the rename command:

@rename obj to name

314 Part Ill © MUD Programming Guide

1G GOOHQOHHHHHHGVOOHHGHHHHDIIOVDSHOSHHHF GHVOGOSOOE

@rename obj to name,alias,alias,alias,....

@rename obj to :alias,alias,alias,....

The rename command renames an object toa new name, optionally including some aliases,

or can also (as in the preceding third form) be used to just set the aliases without changing

the object’s preferred name. The obj part of this command (or any command) can be either

a name (ball) or an objnum (#2361), whichever is more convenient for you.

Object names can be any combination of letters and numbers and spaces, but it’s best to

stick to single words, or maybe two or three descriptive words. Avoid numbers; they’re just

confusing. If you give your object a long name, it’s sometimes useful to also give it a short

alias.

If you had an object representing a bottle of soda pop, you might want to be able to refer

to it in a variety of ways, so you could give it several aliases, as in the following:

@rename bottle to bottle, soda bottle, returnable soda bottle, returnable

Player Names Are Unique
Your player object has a name, and that’s your name on the MOO. Unlike regular objects,

you can only change your name to something which no other player has selected for

themselves.

If you try to rename a player object to aname that’s already taken, the MOO will complain.

(See the section entitled “Ownership and Permissions,” later in this chapter, if you’re

curious about the technical details of how this restriction is enforced.)

For the purpose of this chapter, your name is Reader and your player object number is

#1007.

Describing Your Objects
You should give a description to every object that you own, so that when people look at

it, they see something interesting.

look ball

You see nothing interesting.

The @describe command gives a description to an object. Following is its syntax:

@describe obj as "text

The text can be anything you want. You should capitalize and punctuate the text the way

you want it to appear. You usually will want it to read like an ordinary sentence, perhaps

without the verb. There is no closing quotation mark at the end of the text.

@describe ball as "A bouncy rubber ball.

Description set.

Chapter 14 © Programming MOOs 315
DDSOQOSHOOIHOHGHOHHGHOHHHOGHGHHHHSOHHHGHHHHHOOOOOS

look ball

A bouncy rubber ball.

What Things Can Sthings Do?
Children of $thing, the generic thing, don’t do very much by themselves. You can name

them, describe them, pick them up and drop them, and that’s about it. We’ll come back

to the bouncy rubber ball, #2361, a little later in this chapter.

Player Descriptions
The $player object (and therefore, your player object, since it is a descendant of player) has

several properties that control how you appear to other players. If you haven’t already

done so, you should set them now. The most important one is, of course, your description

property, set with the @describe verb. You can refer to your own player object as me.

@describe me as "A pleasant person with good taste in books.

You also should set your gender, which arranges for your pronouns to come out correctly.

@gender female

Gender set to female.

Your pronouns: she,her,her,hers,herself ,She,Her,Her,Hers,Herself

look me

Reader
A pleasant person with good taste in books.

She is awake and looks alert.
Carrying:
ball

The basic genders include female, male, either, Spivak, splat, plural, egotistical, royal, and

2nd. Some MOOs have defined other genders. If you’re not sure which gender you’re

currently registered as, or you want to see a list of possible genders, just type @gender, and

the MOO will tell you. Political correctness aside, some of the genders are pretty weird;

my favorite is Spivak.

Changing Parents
When an object is created, it inherits the properties and verbs of its parent. (Its parent

inherited some of its properties and verbs from its parent, and so on. Each parent along

the way contributes or changes some properties and verbs.) When you chose the parent

for your object with @create, you chose a particular set of inherited verbs and properties,

giving your object the same behavior as its parent.

Later, you may have decided that your object should behave in a different way—the way

that some other object works. You can change your object from the class it is in now, to

another class, giving it a new parent and forgetting about the old parent.

316 Part Ill © MUD Programming Guide

BDOWHOOHHHHH HG OOHHOHHHHDD VOSVSGHGDD BOVIS 9IISS9SS GOGO

This usually only makes sense if the new parent_is very similar to the old parent. For

example, if the new parent is just down some other branch of the same family tree.

Example: Changing Your Player Class
All player objects are descendants of $player, but there might be many diverging types of

player classes. Changing your player class makes sense because they all have the essential

necessary verbs and properties for you to function as a player. Of course, you will lose

whatever verbs and properties you inherited from your old parent (unless your parent was

inheriting it from some ancestor in common with your new parent.)

The following example switches from the player class you are now to the class of players

descended from an object named Revenant Player Class:

@chparent me to #5409

Parent changed.

The server recognizes me as referring to your very own player object.

Unless the object (in this case, the parent) is in the same room with you, which may be

unlikely, you will have to refer to it by object number. How do you know the object

number of the Revenant Player Class, for example? How could you know that such a class

even existed in the first place? Generally speaking, you will have to just ask around on your

MOO.

Suppose that you see another player (in the same room as you), and you would like to be

the same player class as they are. You can find out what their player class is with the

@parents command, as in the following:

@parents Fred

Fred(#59845) Revenant Player Class(#5409)

Sick's Sick Player Class(#49900)

Detailed Player Class(#6669)

Generic Super_Huh Player (#26026)

Politically Correct Featureful Player Class (#33337)

Player Class that does substitutions and assorted stuff (#8855)

Generic Player Class With Additional Features of Dubious Utility (#7069)
generic programmer (#217)

generic builder (#630)

generic player(#6)

RootClass (#1)

@parents gives a list that shows the name and object number of the object you specified

(in this case, a player named Fred), and the name and object number of all of its ancestors,
all the way back to the Root Class.

Getting Rid of Objects
When you have an object that have finished playing with and that you wish didn’t exist

anymore, you can recycle the object. Recycling makes the object go away, permanently;
it erases the object from the MOO.

Chapter 14 ¢ Programming MOOs 317
2QQSOSGHOHGHGHLOHHGHGHOGHH9OOHHHHSHOOOOOOOE

@recycle object

You can recycle any object that you own. When you recycle an object, its object number

eventually becomes available for reassignment to some other new object. (That’s why it’s

called recycling, rather than destroying.)

Delayed Recycling
On some MOOs, when you recycle an object, it’s sometimes possible to get it back, if you

act quickly enough. Most MOOs don’t work that way, though. Generally, once you have

recycled an object, it’s gone for good.

Sentences, Verbs, and Objects
Understanding verbs and objects is what MOO programming is all about. Look at how the

server parses your command sentences into verbs and objects, and decides which verbs

to execute. This probably is the most complicated part of MOO programming.

Your command input consists of a simple sentence, except that you don’t use articles (a,

an, the), and there’s no ending punctuation. Your sentence is broken up into words; the

server understands sentences of the following forms:

verb

verb direct-object
verb direct-object preposition indirect -object

The prepositions that the server understands include with, using, in, on top of, through,

behind, for, and is.

Verbs need to know which objects they should affect to do their work. The server assists

by trying to provide the objnums of the direct and indirect objects in the sentence, if it

can figure them out. (If it can’t, the verb just winds up getting the literal words from the

sentence; the verb itself has to figure out what to do then.)

The direct and indirect-objects in your sentence can be written either as objnums (such

as #2361), or object names (such as ball). You could say

get #2361

or

get ball

The server tries to match up the objects in your sentence with objects in the MOO. Usually

people manipulate objects that are nearby that they can see, and they usually call the

object by its name.

318 Part Ill * MUD Programming Guide
DOB WOLSSGHHGHHHOOOOHHGHHDHHVOGPHHHHISVOOGSOE

Objnums are only needed when there are nearby things with the same name, or when

you want to refer to something that is far away.

When you use a name rather than an objnum, the server goes looking for objects that you

are holding or that are in the same room as you. Abbreviations of object names are

allowed, and the server will try to figure out what you mean. For example, if there’s only

one object named basketball, you may be able to refer to it as just bask.

The server also knows that the word me refers to your own player object, and the word here

refers to the room that you currently are in.

Verbs
Verbs are part of objects, and every verb has a name, such as say, bounce, or drop. Different

objects can have verbs of the same names that do different things. The server has to figure

out which is the correct verb to invoke.

The server assumes that the first word of your sentence is the verb. You also can begin your

input with one of the following special characters, which are replaced by the indicated

verb.

5 eval

A space is automatically included after the substitution, just as if you had typed the word.

The server searches for the named verb by looking at your player object, the room you’re

in, the direct-object, and the indirect-object, in that order.

Ifname of the verb is laugh, for example, you can think of the server as asking the following

questions:

H Does this player know how to laugh?

@ Does this room have a way that players in it should laugh?

@ Does the direct-object know how to laugh?

M Does the indirect-object know how to laugh?

Arguments
In computer lingo, an argument is a piece of information that a program requires at the

time it is invoked. A program is written to expect certain arguments, and doesn’t work if
they are not provided when you try to invoke it. Argument also is used to mean the

Chapter 14 ¢ Programming MOOs 319
POOOQWIIOSHHOOOWHHHHOHOOSHHHHHSHOOOOHHOO!

placeholder for the expected information. For example, if someone were to say, “The

program takes a date and an amount as arguments,” they would mean “When you invoke

the program, you must give it a date and an amount.” Such a program would be said to

“take two arguments.”

On the MOO, verbs that process sentences can take several arguments, including: the

direct-object, preposition, and indirect object. As you will find out, the argument specifiers

for the verb define which of those arguments the verb takes, and also puts some

restrictions on what the arguments can be.

Argument Specifiers
Not every verb is applicable to every sentence. Each verb has argument specifiers that tell

the server which kind of sentences it will work with. The argument specifiers are a

template indicating whether the verb handles direct or indirect objects and prepositions.

When the server is searching for a verb with the right name on the player, room, and

sentence objects, it also checks each verb’s argument specifiers. The verb will only be

selected if both the name and the argument specifiers match the sentence.

Every verb always has three argument specifiers, always written in the order: direct-object,

preposition, indirect object. The specifier is just a special word that says whether the part

of speech is applicable to this verb.

For prepositions, the specifier is either a word that begins a prepositional phrase (such as

with), or the word any, if just any old kind of preposition is allowed. It also can be the word

none if no preposition is allowed for this verb.

For the direct-object and indirect-object objects, the specifier is the word any, none, Or this.

The word any means that any object can be used as that part of the sentence, and none

means that the corresponding part of speech must not be present. The word this means

that the verb will only work on the very object that the verb itself is defined on.

Suppose that there is a sword object that has a verb named slash. It might have the

following argument specifiers:

slash any with this

meaning that any object can be slashed with this sword. Sentences such as slash Sam with

sword could match this verb.

Another example might be a bottle, perhaps one that has been labeled cryptically: DRINK

me. The bottle might have a verb named drink, with the following argument specifiers:

drink this none none

meaning that only sentences such as drink bottle would apply.

The server searches through the player, room, direct, and indirect objects, in the order

described previously, looking for a verb that has both the right name and the right

argument specifiers. When the server finds a verb that matches, it invokes that verb and

320 Part Ill © MUD Programming Guide
DOB QOOEHOHHHHGOOHHHHHHSOHVDLQSOHSHHIOOO®

gives it all the information about the sentence. The verb is informed as to all the words

that you typed in the sentence, and also which objects (if any) the server located that

match the names in the sentence. Invoking the verb activates the object to do whatever

the object’s verb is programmed to do.

Say, Can You See?
The most popular command on any MOO certainly is say, which prints out your words

to everyone else who’s in the room, and is how groups of people chat with each other. How

does it work?

"Hello, virtual world!

The server substitutes the word say for the " character, yielding the sentence:

say Hello, virtual world!

The verb name is say. There’s no preposition there, so the direct-object is taken to be the

whole string of words after the verb, Hello, virtual world! (the server looks for an object

with that long and rather unlikely name, but finds none).

Now the server looks for a say verb of the proper form. First it checks your player object,

but it doesn’t find a say verb there. Next it checks the room you are in. Rooms are, in fact,

where say is implemented. The room’s I verb has the following argument specifiers:

say any any any

meaning that absolutely any sentence would be acceptable.

Therefore, the server invokes the room’s say verb.

The say verbs on rooms usually are programmed to take all the words in the sentence you

typed (except for the say, of course) and print out You say whatever to the player who said

it. It also prints out the message to any other player in the same room.

Emoting (which is covered in Chapter 5) also is programmed on rooms very much like say.

Do You Get It?
Many objects have verbs that only work on themselves. The argument specifier for these
verbs looks like:

this none none

Only sentences where the direct-object is this object will work. In the following example,
no preposition or indirect-object is allowed.

get ball

You take ball.

Chapter 14 ¢ Programming MOOs 321
SOGOSSGSHS SH 9S 9 999GS9S690G989S9S650009 899999000 8080080

In this case, the verb is named get, and the server finds an object named ball in the same

room as you, so the direct-object will be #2361. The server now searches for the appropriate

verb to invoke.

1. As always, first it checks your own player object. There is indeed a get this none

none verb defined on your player object. But that’s not the right verb to invoke,

because the direct-object in the sentence was the ball (#2361). This verb only

works if the direct-object is your player object.

2. Next, the server tries the room you’re in, but there is no get verb defined on your

room.

3. The server checks the direct-object to see if it has a verb named get. All $things,

including your ball, have a get verb, as in get this none none.

Those argument specifiers require that the direct-object be this very object. The

direct-object in your sentence is indeed this very ball, so that’s a match!

The server invokes the ball’s get verb, which arranges for the ball to be in your possession

and prints out an appropriate message, such as You get ball or You already have that!.

Verbs on Player Objects
Usually, when you command some action (such as get) towards an (direct or indirect)

object, such as the ball, that object’s own verb is the one that is invoked. This isn’t always

so, however.

As explained previously, the player object is the first thing that the server looks at when

searching around for a suitable verb. The types of verbs you find on player objects tends

to fall into two categories. Some verbs simply modify the player object itself (perhaps

changing the appearance), or are utility commands for the player. Other player object

verbs might manipulate other objects (in some way that’s unique to the player class). The

following three sections look at examples each kind.

@sethome
The @sethome verb is used to change your home location to the room that you are now in.

If you were in a room called 73 Mystery Avenue, it would be used like this:

@sethome

73 Mystery Avenue is your new home.

The server sees that the verb is named @sethome, and that there are no objects to parse. It

looks for an appropriate verb, first on your player object, and finds one:

@sethome none none none

Those argument specifiers mean that the verb is applicable only for “bare” sentences with

no objects.

322 Part Ill ¢ MUD Programming Guide

DOODOHOOHOHHHGHDDlOHGHGHGHGHHIDVOGOHOPI9D VWOOSGSSHIVIVWO

That’s the kind of sentence you typed, so the server invokes your player object’s @sethome

verb. The verb adjusts your player object’s home property and prints a message to that effect.

@gender
In the following sample, the name of the verb is @gender, and the direct-object is spivak.

@gender spivak

Gender set to Spivak.

The server first looks on your player object for an @gender verb, and finds one specified as

@gender any none none

which means that anything can be the direct-object, and no preposition or indirect-object

is permitted.

The server invokes your @gender verb. As it happens, the @gender verb is programmed not

to care that there is no such object as spivak. The verb is only interested in the literal word

“spivak,” and it sets your gender as indicated.

If you enter

@gender

by itself, the procedure is much the same. This time, there’s no direct-object in the

sentence, but that’s okay. The any argument specifier means not only that any object will

be allowed for that part of speech, there doesn’t even need to be a word for that part. (This

is different from none, which means that there may not be such a part of speech under any
circumstances.)

In the case of no direct-object, the @gender verb is programmed to print out what your

gender is, and also supply you with a list of all the possible genders.

@describe
The @describe verb, which is on your player object, is designed to enable you to modify

the description of any object. (It can modify the description of any object, not just that

of your own player object, or any other objects.)

@describe lump as "A sooty lump of coal

The verb is @describe, the direct-object is something called lump, the preposition is as, and

the indirect object is the word string A sooty lump of coal. The server finds the following
verb on your player class:

@describe any as any

The lump object matches the direct-object any, as matches the preposition, and your
descriptive words all become the indirect object.

Chapter 14 ¢ Programming MOOs 323
IBD OOS ®BDSOOS OO SO 8 OHS GOGH 46009 99S 0G60G600090000

The server invokes the player object’s edescribe verb, which is programmed to arrange for

the lump’s description property to be set to A sooty lump of coal.

Hey, Look Me Over
Another all-time biggie commanzd is look, which prints out a description of a part of the
MOO for you.

Alone, look gives a description of the room that you’te in. The server parses the verb name,

look, and because there are no other words, it doesn’t need to parse any objects and so it

begins searching for a verb.

Like the say verb, look is implemented by aroom. The server invokes the room object's look

verb, and the verb prints out a description of the room.

look ball

When you ask to look at some particular object, the server again parses the verb name, and

then finds an object matching the name ba11. So this time your ball (#2361) becomes the

direct-object. To complete its job, the server goes looking for the appropriate look verb to

run. As always, it checks the player first, and then it checks the room.

What happens next is somewhat peculiar. Suppose that the argument specifiers for the

room’s look verb were:

look none none none

The new sentence, with it’s direct-object bal1, does not match that, so the server would

not use the room’s look verb. Next, the server tries the direct-object—the ball—and

perhaps finds a look verb with these argument specifiers:

look this none none

The ball’s own look verb would be invoked to print out a description of the ball. If you

guessed that this is how it works, you have correctly understood how verbs work, and it’s

a good guess. However, in this case you would be wrong; the story is a little more twisted

than that.

The look verb on the room actually has these argument specifiers:

look any any any

This sort of short-circuits what you may have thought was the most obvious way of

implementing look! The server will successfully match any look sentence to the room’s

verb.

The server invokes the room’s look, with ball as the direct-object. The room’s look verb

then proceeds to look up the direct-object the way it wants to. The room’s look then

directly invokes the look_se1f verb on the object to be looked at (the ball). (Later, you learn

how verbs can invoke other verbs like this.) The bal1’s look_self verb then prints out the

text stored in its own description property.

324 Part IIl_ ¢ MUD Programming Guide

1D DB QOGHHSHHHHHOHOGVHHGHHHHHIWGHEGHHIIIWVOVDOGSGVHOWO

look is programmed this way for extra flexibility. so that in some rooms, for example,

things can look different than they usually do! Don’t be too daunted by look—it’s an

example of a pretty complicated program.

Examining a Verb’s Argument Specifiers
You can see a verb’s argument specifiers by using the @display (or just @d, for short)

command.

@display obj:verb name

The @display command is useful for getting a variety of information about objects. The

preceding form will get you information about a particular verb on a particular object (the

asterisks will be explained in “Advanced Verb Syntax”).

@d $thing:drop

#5:"d*rop th*row'Wizard (#2) rxd this none none

Sie lectern ies == anbataegwinyw eam aie finished ---- -3---<--=-=-==—- => = 2 =

Huh? | Don't Understand That
There’s one more wrinkle in how the server chooses which verb to invoke. Suppose that

the server can’t find any object with an appropriate verb (name and argument specifiers)

on the player, nor in the room, nor the sentence’s direct or indirect objects.

In this case, the server checks to see if the room has a verb named huh, and if it does, it

invokes that verb! The huh verb is intended to be a last-ditch attempt to make sense of the

sentence. If there is no huh verb, the server prints out:

I don't understand that.

The room’s huh verb, like any other verb, could be programmed to do anything. In practice,

it usually is programmed to understand a few kinds of slightly more complicated

sentences than can the server. If huh can’t figure out what the player meant, it prints out

the same message that the server would have, as in the following:

I don't understand that.

huh is largely invisible to the both the player and the programmer, and you don’t really

need to worry about it. It’s mentioned here to give you a more complete picture of how

the server understands sentences. (If you come across a sentence that the server

understands, but you’re not sure why it worked, it might have been due to the huh verb!)

Note Objects
A note is an object that has writing on it, such as a slip of paper, or a posted sign. Notes
are in the object class $note, the generic note.

Chapter 14 ¢ Programming MOOs

@create $note named No Trespassing Sign,sign

You now have No Trespassing Sign (aka sign) with object

number #2171 and parent generic note (#9)

You can refer to your note by its long name, No Trespassing Sign, or by the short name you

gave it, sign.

Your note will need some description...

@describe sign as "Stiff cardboard with a red and black warning.

Description set.

Finally, you presumably will want to write something on your note...

write "Violators Will Be Prosecuted" on sign

Line added to note.

You can use the write verb to write additional lines on the note, if you want.

Set down the note, and leave it in the room you're in. (Imagine that you are in a room

called Sure Would Forest.)

drop sign
Dropped.

look
Sure Would Forest
Tall trees create a quiet and dark place of solitude. Sunlight
glimmers from above, and leafy shadows dance around you.

You see No Trespassing Sign here.

look sign

Stiff cardboard with a red and black warning.
There appears to be some writing on the note...

read sign
There appears to be some writing on the note...

Violators Will Be Prosecuted

(You finish reading.)

If you decide that you don’t like the message on the sign, you can erase it, all at once, with

the erase verb.

erase sign

Note erased.

Only the owner of a note can write on it, or erase it.

The $note object defines those verbs for us, and your No Trespassing Sign inherited them

because it’s a child of $note (#9). Their argument specifiers are:

read this none none

erase this none none

write any on top of/on/onto/upon this

325

326 Part Ill © MUD Programming Guide

1BBOHQOOHHHGHHHBOHVOHGHHHHD FD VOVOD HDDS IOSVE

This means that the read and erase verbs work in simple sentences where the direct-object

is your No Trespassing object. The write verb requires a preposition (introduce with any

of the phrases on top of, on, onto, or upon) with an indirect-object that is your sign. Any

words (any) will be accepted in the place of the direct-object.

A Sletter is a Kind of Snote
If you hand someone a $note object (that is, a child that you've created from $note), they

can walk away with it and read it whenever they want. But when they are bored with it,

what should they do with it? Because they are not the note’s owner, they cannot recycle

it; only you can do that. Perhaps they could just discard it by dropping it somewhere, but

that leaves a mess in some (virtual) room. You could just wait for a couple of days and try

to remember to recycle it for them, but there’s no particular way for you to know whether

they’ve read it yet.

Plain children of $note seem more suited for use as posters or signs, like your No Trespassing

example. For a note intended for a particular player, you want some slightly different

behavior.

The generic letter, $letter, is a child of $note. It inherits the read, write, and other verbs

that $note has. If you create a child of $1etter, your letter will in turn inherit those verbs

from its parent. But $letter also has a verb that $note does not have: burn. Naturally, your

child object will inherit burn, along with read and write and erase.

@create $letter named love letter

You now have love letter with object #2172 and parent

generic letter (#54).

write "My darling dearest," on love letter

Line added to note.

write "Please don't burn me again, but you can burn this

note as soon as you're done reading it." on love letter

Line added to note.

The burn verb on $letter allows anyone who can read the letter to also be able to burn it

by typing

burn love letter

Love letter burns with a smokeless flame and leaves no ash.

The burn verb is programmed to recycle the object in a fashion similar to the @recycle

command.

By the way, anyone could have read that love letter, and anyone could even have burned

it! If you would like only a specific person or persons to be able to read and burn your $note

(or $letter) objects, you can use the encrypt verb (defined on $note) to make such

restrictions.

Chapter 14 ¢ Programming MOOs 327
2DODLSYOSSSS GSH 9 9OSHGSOGS90999SH8900008008

Help
The LambdaCore database, from which most MOOs are built, includes extensive help

texts for users and programmers. You can read these simply by typing help and the name

of the topic on which you would like help. For example, help notes would display the help
text for $note objects.

help Gives a list of basic help topics.

help index Gives a list of major indices for help topics.

The Editor
The text of notes, textual property values, and verbs (programs), can be input and

modified with the MOO’s own simple text editor.

You begin “editing” an object by issuing the appropriate editing verb, such as @notedit.

You are teleported into a special room that understands some verbs that are for text

editing. Inside an editor, whether you are editing a note, a property, or verb, the editing

verbs all work pretty much the same. You edit just one thing at a time inside the editor

room, and when you're done, you leave the editor room.

To edit the writing on a note (or letter, or any other object descended from $note), use

@notedit. You also can edit a textual property (for example, a description) using the

@notedit command. When you write or edit a verb, you enter lines of program statements.

To edit a verb, you use @edit, as in the following:

@notedit note obj

@notedit obj.property name

@edit obj:verb name

The editor is line-oriented. You enter lines of text, which are numbered. If you need to

refer to a line (for example, to change or delete it), you simply refer to it by line number.

The editing rooms are programmed to make it seem like you’re the only one inside, all

alone. If you look, you will get information about help topics rather than a description of

some physical place. Also, there’s no talking or emoting among players in an editor room.

Instead, the say verb in these rooms is programmed to take your words and add them to

the text being edited.

@notedit sign

Note Editor

Do a 'look' command to get a list of the commands,

or ‘'help' for assistance.

Now editing "No Trespassing" (#2171).

328 Part IIl_ © MUD Programming Guide

BB®BWOLLHOHGHHOOHVPSOHHHHIHHVGOGHOHPOIIVOGOGHHGIVE

To see what text is already on the note, use the list command:

list

__1_ Violators Will Be Prosecuted
AAAA

If there are many lines of text, list will only show you a few of them, unless you

specifically ask for a certain range of lines. A range of line numbers could be

1 Just line 1

4-17 Lines 4 through 17.

1-$ Line 1, through the end ($). In other words, all the lines of text.

Adding Text
As you edit, the room keeps track of which line you are on. In the list command

(mentioned previously), you can see that you are on line 1, indicated by the **** pointing

at the line number. (So far, there’s only one line of text on your sign, so of course you're

still on line 1).

To add a new line of text right after the line that you’re on now, just say the line that you

want added.

"This means you.

Line 2 added.

list

1: Violators Will Be Prosecuted

__2_ This means you.

The line you’re on sometimes is referred to as the insertion point, because it’s where new

text will be added. The insertion point does not move when you do a list command. Some

other commands (such as delete) move the insertion point, but those commands tell you

what action they have taken and which line you now are on, so you won’t become

confused.

You can move the insertion point around if you want to place new text somewhere other

than the end. Use the insert command, and say which line comes after the place that you

want your new line to go. For example, to insert something before the first line, type

insert 1

**1* Violators Will Be Prosecuted

"POSTED

Line 1 added.

list 1-$
__1_ POSTED

Chapter 14 ¢ Programming MOOs 329
QOD ODSHGOHSOYHDHGHHHOHGOOIOHHGSOGHHOVOOHHHSHOOOO OOOO

**2* Violators Will Be Prosecuted

3: This means you.

The insert command doesn’t actually add any text; the say (") command does that.

The insert command just moves the insertion point to indicate where any new text

should go.

The insertion point now is between line 1 and line 2. (Notice that all the lines are
renumbered because of your insertion.)

If you want to add something to the end of a line (without making a brand new line), you

emote. Move the insertion point back to the very end of your text, and add something to
the last line.

insert $

__3_ This means you.

: We're not kidding!

Appended to line 3.

list 1-$

1: POSTED
2: Violators Will Be Prosecuted

__3_ This means you. We're not kidding!
AA

Deleting and Changing Text
The simplest way of making changes, albeit the most cumbersome, is to retype the entire

line that is in error. To do this, first delete the line you don’t like, and then just type in

a replacement line.

Lists2

2: Violators Will Be Prosecuted

delete 2

---Line deleted. Insertion point is before line 2.

"Violators Really Will Be Prosecuted

When you delete a line, the insertion point moves so that you’re ready to add new text

to replace what now is gone. (Also, all the lines are renumbered, but don’t let that fake you

out. When you add your new line back in, the lines are renumbered again! It all comes out

in the wash.)

Substituting Text
You can use the subst command to make small changes within a single line or a range of
lines, such as substituting one word for another. You specify the old text and the new text,

330 Part Ill # MUD Programming Guide

D®SOOQOOHOOHOHDIOOHOGH9SOSHHSO9HGOS OOO SSSOSI9e

delimiting them with a slash (/). Note that there’s no space between the word subst and

the first slash.

subst/old/new

subst/old/new/range of lines

subst/old/new/g

subst/old/new/grange of lines

If you don’t say which line to change, subst will only make changes on the line that you're

now on(the insertion point, to which ~*** points). To make changes across a range of lines,

add an extra slash and specify the range you want (such as 1-$). Whenit’s all finished, subst

does an automatic list of the lines that changed.

subst is case-sensitive, which means that you have to type the letters of the old text in

upper- or lowercase, just as it appears, or it won’t be replaced. If you want subst to ignore

capitalization, you can put the letter c after the ending slash to indicate that case doesn’t

matter.

Finally, remember that subst only makes one substitution on each line. You can put the

letter g after the ending slash to indicate that you want global substitutions (more than

one change per line). You also can combine the c and g modifiers.

Here’s how you might add a little more text to your sign, and then finish off edits with

a substitution. Replace in every line in the text all letter os with asterisks (*), regardless of

whether they are upper- or lowercase, no matter how many there are on a line.

insert 2

Sei POSTED

**2* Violators Really Will Be Prosecuted

"Keep Out

Line 2 added.

list 1-$

1: POSTED
2: Keep Out

3: Violators Really Will Be Prosecuted

__4 This means you. We're not kidding!
AKRAA

subst/o/*/cg1-$

PASTED
: Keep *ut

: Vitlat*rs Really Will Be Pr*secuted

{

2
3

_4 This means y*u. We're n*t kidding!
ARAA

Now the words in your sign appear as though perhaps it’s been violently altered by

someone who has good marksmanship skills and poor judgment!

Chapter 14 © Programming MOOs 331
) BOD BVBOSGGS OOQIDHGHHSHOLOHIHHGHGHHHGHOOVHHGHGHOHSOOO HOOK

Save

When you finishing editing with @notedit, you have to save before leaving the editor, or

your changes will not take effect.

Save

A neat trick you can do in the note editor (when editing notes or properties) is to take the

text from one object, and install it on a different object. This enables you to copy text,

perhaps incorporating some changes, and then put it on a different object. To do this,

simply @notedit the note or property that has the text you want to copy elsewhere. Make

the changes you want to the text in the editor. When you’re done, rather than doing a

regular save, you can specify a different place to which to save your text.

save note obj

save obj.property name

If you save to a different object in this way, the editor knows that you’ve “changed your

mind” about which note or property you want to edit. The plain old save command now

will save text onto this different object that you’ve chosen. You can switch around to

different objects with the save command as many times as you want.

Saving Changes to Verbs
The verb editor does not use the save command. Instead, use compile, which checks over

the program you’ve entered, and either saves the verb, or else complains that there are

mistakes.

Leaving the Editor
When you finish editing, use the done command to exit the editor room. Your changes will

not take effect unless you do save (for notes and properties) or compile (for verbs) before

leaving.

If you exit the room without first saving your changes, the editor remembers what you

were doing and keeps your work around for you. If you come back to that editing room

in the near future, your work will still be there, and you can pick up where you left off.

(This is useful if you must leave the MOO to finish cooking dinner, or if you are

disconnected accidentally.)

If you are inside the editor and decide that it was all a big mistake, you can use the verb

abort to throw away your changes and leave the room. (Any save commands you already

did already will have taken effect, but unsaved changes will be lost.)

332 Part Ill © MUD Programming Guide

DODOOOHOOHHHGDDOHLOVHGHH DGD VWGHG HOI DB VOOOPGGBDBBBVSIBVOIVOVE

Client-Based Editing
Some clients provide better editing capability than the MOO’s editing rooms. If your

client provides a better way to edit, you don’t have to use the commands in the MOO

editor to make changes. Because there are many different kinds of computers and many

different clients, clients are beyond the scope of this book. However, here are some hints.

Cut and Paste
If your client supports cut and Paste, and you have some editing program on your

computer that you know and love, you may be able to use it in conjunction with the

MOO’s editor. This is somewhat primitive, but you might like it better than using only the

editor commands mentioned previously.

You could capture the desired text (with list in the editor, or maybe even from a look

outside the editor), and then paste it into the editor on your computer. Now make your

changes there. Don’t forget to strip out any line numbers and other junk that isn’t actually

part of the text!

To get ready to receive the text, go back to the MOO and enter the appropriate editing

room (such as @notedit) on the object. Use the command delete 1-$ to delete every line

of text.

Now, to enter many lines of text all at once, use the enter verb. It accepts lines of text

(without any say or emote verb) one after the other, until you enter a line that has nothing

on it except a period (.). Do enter, and then paste all the replacement text from your editor

onto the MOO. When it’s there, say a line with just a period on it, and you’re done.

If you get stuck inside an enter, type in a line consisting of the word @abort, and that

should get you out. =2
Other Editing Commands

There are several other editor verbs for joining lines together, searching for text, and so

on. For more information, use the help command while inside the editor.

Customizing with Messages
The main way that most objects respond to most of their verbs is to print a message to one

or more players. For example, when you pick up any $thing, the get verb on the object

prints out several messages. One message goes to you, and says something like, You pick
up ball. Another message goes to everyone else in the room, Reader picks up ball.

Chapter 14 ¢ Programming MOOs 333
9OOQODVDOHGHHOHLS OOH VHSHHOHHOOWIOSOHOHOOO OOOO

Rather than putting the message right into the verb, where it could not be changed

without reprogramming, it’s more fun when players can change the messages around. To

this end, the messages are remembered in properties on the object, and are inherited by

the child object that you create. You can customize your (child) object by changing the

contents of the message properties.

To find out all the messages that can be easily customized on an object, and to see what

they are set to look like at the moment, use the @messages command. For example, there

are several messages that are customizable on your own player object:

@messages me

@more me is "*** More *** ‘%n lines left. Do @more [rest}flush] for more."

@page_ absent me is "%SN is not currently logged in."

@page_ origin me is "You sense that %n is looking for you in %1l."

@page_echo me is "Your message has been sent."

You change the messages using the commands shown by @messages.

@page_absent me is "%N is off in the real world somewhere."

You set the "page_absent" message of Reader (#1007).

The *N in the message is a placeholder for your name, and will be processed by the verb

when it’s time to print the message.

Later on, you see how pronoun substitution works, and also how to program the messages

for vour own new types of objects.

Digging Rooms
Rooms are the objects on the MOO that represent the places in which you can wander

around. Rooms are all descended from $room, the generic room.

You can create rooms the same way as other objects, with @create, but it’s more common

to use the special verb @dig. The difference is that @dig knows how to hook up entrances

and exits for you (which would be tedious to do by hand after an @create).

A basic room has properties that say things such as who are the room’s residents, what

messages will be printed if someone is forcibly expelled from the room by the owner, and

whether the room is dark. There are verbs on $room for: say and emote, that control how

player speech and actions appear; look; and verbs that manage the exits.

The edig command creates a child of $room. After you have created the basic room, you can

use @chparent to change parents to some generic descendant of $room. Fancier rooms might

have security, to enable the owner to control which players may enter, and when. Some

rooms understand about furniture objects on which players can sit or lie down. Some

rooms represent outdoor scenes, and may even be programmed to have weather.

@dig new-room-name

This digs a new room that is not connected to anyplace else.

334 Part II] ¢ MUD Programming Guide

DDOWOOOHHOHGHH HG VOGSHGHDGDD BOS OS DIDSBIVVGOBPOOD'

@dig "Airport West Ramp"

Airport West Ramp (#172) created.

You should write down the objnum that édig tells you because that is how you will have

to refer to the room. (Because the room is not hooked up, you can only get there by

teleporting with the @move command!)

The new-room-name should be either a single word with hyphens (as in the preceding

example), or you need to put the words in quotes.

@dig exit-spec to new-room-name

This digs a room (as in the preceding example), but also creates an exit from the room

you're in to the new room. The exit-spec indicates which exits should be created and

hooked up.

If you simply use a direction name, like west, @dig will create an exit named west from the

room you're in to the new room. People are accustomed to abbreviating west to just w, so

you should probably arrange for that to work by using the exit-spec west,w.

If you want to create exits from your new room to the room you're in, use the exit-spec

west,w;east,e.

In addition to north, south, east, west, northeast, northwest, southeast, and southwest, you

can use almost any word as the name of an exit direction. (The room’s huh verb will make

this work.) Some other common ones are out, leave, up, and down. People also sometimes

give descriptive aliases to a direction; the exit-spec up, stairs, leave, out enables the player

to type any of those words to go in the same direction.

@dig tells you the objnum of the exits it created, but you don’t need to write those down

or remember them. You usually don’t need them, but you could always find them again

with the @exits command.

@dig exit-spec to room

Once you’ve created a room, this form of the @dig allows you to add more exits and

entrances to it.

Exits
Every room hasa property called exits that contains a list of all the exits (that is, it contains

a list of objnums of the relevant exit objects). The exit objects, in turn, have properties

that remember where they connect to. This information forms the geography of the
MOO’s virtual world.

When you type west, for example, the server does its usual thing and finds a verb named

west on the room. The room actually has verbs named east, west, north, south, and so on,

and all those verbs do the same thing. The verbs look inside the room’s exits property for

an exit that has the same name, and then they in turn invoke a verb (somewhat

confusingly named invoke) on the exit. The exit object has a property named dest

Chapter 14 ¢ Programming MOOs 335
QQQW®@LVSOGHGHOOLOQISGHHHHOHOQHHHGHHHH HOH HHHOHHHHOOHOOOOE

(destination), which remembers the objnum of a room. The invoke verb on the exit does

the work of transporting the player into that room, and also prints out a message.

You can get a list of the exits in a room with the ¢exits command:

@exits

south (#102) leads to Yellow Room (#101) via {south, s}.

up (#90) leads to Second Floor Landing (#129) via {up, u}.

east (#153) leads to Sandy Castle (#112) via {east, e, out}.

To find out about messages that you can set on those exits, use @messages:

@messages up

@oleave up is "%N ascends the spiral staircase."

@leave up is "You begin climbing the spiral staircase."

@nogo up isn't set.

@onogo up isn't set.
@arrive up isn't set.

@oarrive up isn't set.

Exits also have description properties, and you should edescribe them, so that if someone

looks at them (looks in that direction), they see a door, a cliff, a water slide, and so on.

@describe up might evoke A beautiful spiral staircase leads up.

(Note that although the exit named up is stored in the exits property of the room, so it

in some sense is a part of the room, but that’s not the same as being in the contents of the

room. How were you able to refer to the up exit, since it’s neither on your person nor inside

the room? How did the server figure out which object up is? Actually, the server never did

figure it out. Rather, this is an example of the room’s huh verb getting to look at your

sentence. The room’s huh is programmed to know about the room’s exits. Note that this

entire process was invisible! You don’t need to worry about it.)

Have a Ball
Return to the ball you created earlier.

look ball

A bouncy rubber ball.

@parents ball

ball(#2361) generic thing(#5) Root Class(#1)

By virtue of being a $thing, the ball has inherited the verbs get and drop (also known as

throw), so you can pick it up and put it down, but not much else. It would be a lot more

fun if you could do more things with it.

@verb object:verb name argument specifiers

You must use @verb only the first time when you go to define a new verb for an object.

@verb ball:bounce this none none

Verb added (@).

336 Part IIl_ ¢ MUD Programming Guide
DDOHDOOGHHHGHHH D 9OHHHHHOHD 9OGOHOS DGD GOGDVG 9D GFB BSS VBSOBSIOE

This creates a bounce verb on the ball that will match the sentence, bounce ball; for this

verb, the direct-object must be this ball.

Of course, simply telling the MOO that the ba11 will have a bounce verb isn’t quite enough.

Trying to bounce the ball at this stage of the game will yield the following confusion:

bounce ball

I don't understand that.

Try this instead: bounce ball

In order for it to do anything useful, you need to program the bounce verb on the ball.

Generally speaking, a program is nothing more than a sequence of the exact steps that

should be taken under a given circumstance. Before you can program the bouncing ball,

you need to decide what it means to bounce—what do you want to have happen?

When someone bounces the ball, you would like to see a message to that effect, and you

would like other players in the same room to see it, too.

To write the program, you go into the verb editor, type in your program, and compile it.

@edit ball:bounce

Verb Editor

Do a 'look' to get a list of commands, or ‘help' for assistance.

Now editing #2361:bounce (this none none).

enter

[Type lines of input; use '.' to end or ‘@abort' to abort the command.]

#1007:tell("You bounce the ball");

Line 1 added.

compile

#2361:bounce successfully compiled.

done

You can use the @list command to see the program for a verb.

@list ball:bounce

#2361:bounce this none none

Ae #1007:tell("You bounce the ball");

bounce ball

You bounce the ball.

Congratulations! That’s all there is to it—you now have your own MOO creation—a ball
that bounces!

However, there’s quite a bit of room for improvement.

Chapter 14 © Programming MOOs 337
>2PS®BOSBOOGVIIDSGOGVVOGDPGGHHGHHOVVHGHHHHHOH9NH 99HGHHHHHOHHHGHHHHOOHHHO8

@program
There’s another way to type a verb’s program into the MOO, without using the verb editor

(@edit). The @program command is a shortcut, but it provides no way to edit. If you’re not

going to make any mistakes (perhaps because you’re pasting the program from your client,

rather than typing it), eprogramis more to the point. When you finish inputting, @program

automatically does the same thing that compile and done does in the verb editor.

@program ball:bounce

Now programming ball:bounce(0)
[Type lines of input; use '.' to end or ‘@abort' to abort the command.]

#1007:tell("You bounce the ball");

@ errors.
Verb programmed.

Verb Examples
Further examples show just the program (code) itself, without bothering to show the

excursions into the verb editor; nor is the @¢verb command shown. Instead, you will just

see the code as @list shows it; from this, you can easily figure out how to type the program.

You’ve been there, done that.

Simple Statements
A program in the MOO language is a series of statements. Most statements are one linelong,

and end with a semi-colon (;).

So far, the example program shown previously is very simple, consisting of just one

statement:

#1007:tell("You bounce the ball") ;

This typical statement looks a little bit like English, and you can easily guess what it’s all

about. Your own player object (for Reader) is #1007, and you somehow are to be told that

You bounce the ball

Calling All Verbs
Much of the work on the MOO is accomplished by verbs calling on other verbs to do part

of the desired work.

Verbs such as bounce are intended to be called by the server when it translates a sentence

typed by a player.

338 Part Ill © MUD Programming Guide
1DOSOOHOSGHHG99G8 999OOG900 9S 9 90S 956090699 969085 99989999098 9%

Other verbs, such as tell, are subroutines; they’re intended to be invoked directly by other

verbs, rather than by the server.

Subroutines
Programs are complicated. Even something as simple as printing out a message requires

many steps. If every verb had to do all the work by itself, it would be both tedious and

tricky to write, and all the verbs would be long and contain duplicated code.

Programs sometimes are called routines because they spell out exactly what rigamarole is

to happen under a given circumstance. The idea of a subprogram or subroutine is that

common operations, such as printing out a message, can be written just once. When a

program wants to perform one of the common operations, it refers to the subroutine

instead. A subroutine is thus a kind of “helper” or “utility” program.

A verb can call another verb with a statement like the following:

object:verb name(argument 1,argument 2,argument 3 ...)

The object references the MOO object in which the verb named verb name is defined. The

colon separates the object from the verb name. The arguments (information to be passed

on to the verb) go inside the parenthesis, separated by commas, in the order the verb

expects them.

tell
Every MOO object has a te11 verb, which does the job of telling the object which words

are being spoken. On players, tell is programmed to print out a message that you can read.
On most other types of objects, te11 doesn’t do anything. But te11 also might make sense,
for example, if the object was some type of a (virtual) tape recorder.

The tell verb takes one argument: the message that is being told.

#1007:tell("You bounce the ball");

This statement means to call the verb te11, defined on #1007, with the argument "You
bounce the ball". Of course, #1007 is the objnum of your player, and its te11 verb prints out
the message.

Using Variables
One glaring problem with the bounce verb is that it has #1007 hard coded into it. If someone
other than yourself tries to bounce the ball, they won’t get any message, because the
program says to tell the message only to #1007. This would be doubly confusing, because
you would see the message "You bounce the ball", even though it was someone else
bouncing it! The problem is that the person who should see the message varies, depending
on who typed bounce ball.

Chapter 14 ¢ Programming MOOs 339
BLDG OLlG®OISSHOGH OVI Y9HGHHH GOOG V99HHHHNGOH BHSSHHHSOH OOOO

You can make this work by using a variable. A variable is a name that refers to some

temporary information. A variable only has information during the execution of a verb,

and effectively ceases to exist once the verb concludes.

Properties on objects keep information indefinitely, but variables in verbs only have

information while the verb is executing.

Programmers can make up any new variables they want in their verbs, and there also are

several special “built-in” variables to which a verb can refer. Perhaps the most important

built-in variable is player, which has the objnum of the player invoking the verb.

If you change the program from

#1007:tell("You bounce the ball");

to

player:tell("You bounce the ball");

then the player who invokes bounce will be the one who sees the message.

Announcements
Another problem with the bounce verb is that only the player who bounces the ball will

see a message. It would make more sense if the other people in the same room also could

see that someone was bouncing a ball.

Add the following statement to your program:

player.location:announce(player.name," bounces the "\ this.name) ;

This statement, which is another verb call, illustrates several basic things.

@list ball:bounce

#2361: bounce this none none
ibe player:tell("You bounce the ball");

PDs player.location:announce(player.name," bounces the el nlisyotneeMiete ot dS

The way to write a reference to a property, to get ata property’s value, is to simply write

object.property name

In this case, you are referring to the location property of the object referred to by the

player. The location property of an object remembers which object is inside; the player’s

location property is a room object. In other words,

player.location

refers to the room the player is in.

The announce verb defined by the room is programmed to go around to every object in the

room and tell it something. announce takes any number of strings and appends them

together, and calls te11 with the resulting message on every object in the room, except that

it skips the player who invoked the verb.

340 Part Ill © MUD Programming Guide
19BDDVOOHHHGHSH 99 OOS HHOSODD OBOE OGSG 99 BGOG9 GO9B99900°0

A string is just a collection of characters (letters, numbers, spaces, and so on). A sentence,

for example, is a string. You write strings inside quote marks: "like this".

Another built-in variable is this, which refers to the object that defines the verb. So, when

the bounce verb defined by your ball (#2361) is executing, this refers to #2361. this is how

an object references itself.

The name property of an object remembers the name given to it (usually by the @create or

@rename Command).

So this line of the verb causes a message like

Reader bounces the ball

to be displayed to everyone else in the room.

While you're at it, you might as well take out the word ball from the string it tells the

player, and replace it with a reference to the ball’s name, as you did for announce. The

program now looks like the following:

#2361 :bounce this none none

We player:tell("You bounce the ",this.name,".");

os player.location:announce(player.name," bounces the ",this.name,".");

This works the same way as before, but if you change the name of your object to something

more interesting than ball, the messages then come out with the new name.

bounce ball

You bounce the ball.

@rename ball to beach ball,ball

Name of #2361 changed to "beach ball", with aliases {"beach ball", "ball"}.

bounce ball

You bounce the beach ball.

@describe ball as "A multi-colored beach ball.

Description set.

More Built-In Variables
Several built-in variables exist for all verbs to use. Most of them have to do with the

command sentence the player typed, and which objects the server found that matched.

You've already seen how this and player are commonly used:

this The object on which this verb was found (Object)

player The player who typed the command (Object)

There are also the following:

dobjstr The direct object string (String)

dobj The direct object value found by the server (Object)

Chapter 14 ¢ Programming MOOs 341
QOOOGOQOWSVHHHGHHVOWIDHOHHOGOHIHHHHGHHOGOHHOHHHHGHHH HHH HOSS!

prepstr The prepositional phrase (String)

iobjstr The indirect object string (String)

iobj The indirect object value found by the server (Object)

As you can see, there are two variables for each part of speech. One is the string of words,

and the other is the corresponding object (that is, an objnum) that the server located.

Sometimes the server will not be able to find any object that matches the words for a part

of speech. When that happens, a special object called $nothing is used as a placeholder in

the variable. Verbs can test to see if, dobj, for example, is $nothing, meaning that no object

was found corresponding to dobjstr.

As far as argument specifiers are concerned, $nothing is something. That is, an argument

specifier of any will match $nothing, just like it would match a valid object.

Other Built-In Variables
Here are some more variables that are needed by some more complicated programs,

beyond the scope of this book:

verb The first word of the command sentence (String)

argstr Everything after the first word (String)

args A list of strings (The words in argstr)

caller The same as player (Object)

Subroutine Argument Specifiers
Some verbs are not intended to be invoked when players type sentences. These verbs are

only for use as subroutines, and are only supposed to be called by other verbs.

The following is the argument specifier for this kind of subroutine verb:

this none this

You can see that this argument specifier could never match any sentence: it has a direct

object, and also an indirect object, but not a prepositional phrase. This nonsense

combination was chosen to represent a subroutine verb that cannot be invoked by a

sentence.

Getting Rid of Verbs
If you mistype an everb command, or if you change your mind about wanting to define

a particular verb, you can erase the verb from the object with the e@rmverb command. Not

only does the verb name and argument specifiers go away from the object, but also any

code that was programmed for the verb is forgotten.

342 Part IIl_ #* MUD Programming Guide
)BSDBOOHGHHGHHHHOVHHHGHHHHVDIOSIOHHOHHDDOVOPOSHGIHWQVPVOOS’

@rmverb object:verb name

@rmverb object:verb name argument specifiers

This command also is useful if you accidentally use @verb with the same verb name more

than one time on the same object. @rmverb erases the most recent verb that matches the

name (and optionally, that also matches the argument specifiers.)

if Statements
The way you’ve programmed your beach ball, anyone on the MOO can play with it. That’s

nice, but the problem is, they don’t have to have the ball in their possession in order to

bounce it. In fact, they don’t even have to be in the same room as the ball! They could be

in some other room, but if they do bounce #2361, they will get the message that they are

bouncing the ball, and people in the room in which the ball is will see the message about
someone bouncing the ball. Clearly, this doesn’t make sense!

You can fix this by programming bounce to check to see whether the player is already

holding the ball. If they aren’t, they should get a complaining message to that effect.

Testing to see if some condition is true or not, and taking alternative actions is a

fundamental programming technique that’s used all over the place. Rewrite the ball’s
bounce verb to look like the following:

#2361: bounce this none none

ye if (this.location == player)

Pe player:tell("You bounce the ",this.name,".");

Si player.location:announce(player.name," bounces the ",this.name,".");
4: else

Ley player:tell("You can't bounce a ", this.name,
" that you haven't got.");

(he endif

This verb illustrates the classic if-then-else type of statement that is common in almost
all programming languages.

if (expression) then stuff endif

if (expression) then stuff else other stuff endif

The expression can be any value, referencing a variable, a property, or any type of
computation that you can express in a simple MOO statement. It always goes inside the
parenthesis, and determines how the subsequent statements in the verb flow. If the
expression is true, the following statements will be executed. If the expression is false, the
verb will skip down to the else (if there is one), and do the alternate statements instead.
The if statement is concluded with an endif.

The following expression

this.location == player

compares the location property of the ball to the player’s object. If they are the same (if
the location of the ball is the player), that means the player is holding the ball. In that

Chapter 14 ¢ Programming MOOs

case, this expression evaluates to true. == compares two values and returns a true value if
they are equal.

Notice that the if, else, and endif words do not end with semicolons. Simple statements

in the body of the if-then statements still end in semi-colons, as usual, but the special

words that delineate them do not.

elseif
You perform several tests in succession in an if statement by using the elseif clause.

if (expression)

then stuff
elseif (expression)

some other stuff
else

last-ditch other stuff

endif

You can include as many elseifs as you want. However, there can only be one else

statement, and it has to come last, or not at all.

Properties
You now have a nice bouncy beach ball that anyone can play with, as long as they are

holding it, but you can make it more interesting by giving it more properties, and teaching

its bounce verb to use them.

A more interesting kind of ball is one that could be inflated and deflated. Begin by adding

a property that remembers whether or not the ball is inflated.

@property ball.inflated @

Property added with value Q.

This adds a property named inflated to your ball, and gives it a value (for now) of @. On

computer systems, true/false values typically are represented by the numbers 0 (for false,

no, OF off), Or 1 (true, yes, Or on). In particular, the MOO language considers 0 to be a false

value.

You have one if statement that tests to see whether the player is holding the ball. Rewrite

the bounce verb, putting another if statement inside that one that tests whether the ball

is inflated:

#2361: bounce this none none

le if (this.location == player)

2 if (this.inflated)
3 player:tell("You bounce the ",this.name,".");

4: player.location:announce(player.name," bounces the ",this.name,".");

5 else
6 player:tell("You have to inflate a ",this.name,

"before it will bounce!");

343
SOSGOSSSSOHGO GO GVO H9GHO9 GH OSH YO HHOHHHOOOHOGHSOHOOOOOOOH!

344 Part Ill © MUD Programming Guide

1D DHOOOHHGHOHHGHH9OOOHHGHDBVWOOVDGGHDIIDOVGHSHBIPISIDBI
BOOV9S

he endif

Si else
9% player:tell("You can't bounce a ", this.name,

" that you haven't got.");

10: endif

Because you set the inflated property to false (0), trying to bounce the ball no longer

works:

bounce ball

You have to inflate it before it will bounce!

You can change an object’s property to have a new value with the @set command:

@set object.property to value

Look at the following example:

@set ball.inflated to 1

Property #2361.inflated set to 1

bounce ball

You bounce the ball.

Whitespace
When typing in your MOO programs, spaces and line breaks (the space bar and the Enter

key, respectively) are interchangeable. You can use whichever one suits you, and you can

type as many statements on one input line as you want. Regardless of how you enter your

program, the server makes the appropriate type of whitespace to break up the individual

lines, so that it always comes out looking good.

The exception to this is strings. You can’t put a line break (you are not allowed to press

Enter) in the middle of a string. If a string is too long to fit on one line, it just wraps onto

the next line.

Verbs for Setting Properties
Using the eset command destroys the illusion of virtual reality; there’s nothing like @set

in real life. In real life, you would inflate the ball by blowing it up with your breath or

something. Moreover, @set only works on objects that you own. If someone else tries to

@set your ball’s inflated property, they will get am Permission Denied error message.

What you want is to have a verb that anyone could use to inflate and deflate the ball. Call

these new verbs inflate and deflate.

#2361:inflate this none none

a if (this.location == player)

25 if (this.inflated)

3: player:tell("It's already inflated.");

4: else

Chapter 14 © Programming MOOs 345
PBDOGHHS OSD OO OGSHGS HOSS 9 GHOG99O09GHHS0900000900'

Oi player:tell("You pucker up and inflate the ", this.name,".");
6: player. location: announce(player.name,

"puckers up and inflates ",this.name) ;
7h this.inflated = 1;

8: endif

9: else

10: player:tell("You can't inflate a ", this.name,

> without pricking! Tt up, Tirst. ~)5
Ts ena

#2361:deflate this none none

ats if (this.location == player)

: if (this.inflated)

3 player:tell("It's already deflated.");

4: else

Oi player:tell("You deflate the ", this.name,".");

6: player.location:announce(player.name," lets the air out of the ",

this.name) ;

ite this.inflated = Q;

8: endif

9: else

10: player:tell("You can't deflate a ", this.name,

Y Mew ony joeolelpel wie Weal, walle Uys

11: endif

These verbs match sentences, such as inflate ball and deflate ball. They have a similar

layout to the bounce verb. The outermost if statement checks to see whether the player is

holding the ball, while the if statement nested inside the first if statement checks to see

whether the ball has already been inflated.

The expression on line 7 of inflate

Ck this.inflated = 1;

assigns the value 1 (which is considered to mean true) to the ball’s inflated property. The

corresponding line in deflate sets the property back to 0 (false) to indicate the ball is not

deflated.

Like the bal1’s bounce verb, any player (not just the owner) can now inflate or deflate the

ball, but only if he or she is holding it.

Message Properties and Pronouns
The messages that the beach ball prints are hard coded into it, meaning that the verbs have
to be rewritten if you want to change the messages. It would be better programming style

to put the messages in properties, where they can easily be changed.

You can name your properties anything you want, but there is a convention for naming

message properties. If you follow the standard convention, the @¢messages command and

the message-setting commands will work. Also, other programmers looking at your object

will more readily understand how your ball works.

The main thing is that name of each message property should end in _msg. For example,

some message about saying hello should be stored in a property named he1lo_msg.

346 Part Ill © MUD Programming Guide

O9QHOOOHHHOHHYYOHOGHH9GDD VOVHGSHDD FB 99BODSSS9SBOGOOO

So far, your ball has messages for when you inflate, deflate, and bounce the ball. There’s

one version for the player, and one version for the other people in the room. Then there

are messages for when those actions don’t work (you can’t bounce the ball because it’s

deflated, for example). Finally, there are messages for when you try to do something with

the ball but you are not already holding it. The latter hard codes remain the same because

they don’t seem to make much sense changed around, but all other hard codes are turned

into properties.

The message properties should be named in such a way that players can tell with which

message the verb the message goes. Messages sent to other people in the room should

begin with the letter o (for others see..). Messages about things that don’t work include

the word fail.

@property ball.bounce_msg "You bounce the %t".

@property ball.obounce_msg "%N bounces the %t".

@property ball.bounce_fail_msg
"You have to inflate a %t before it will bounce!

@property ball.inflate_msg "You pucker up and inflate the %t."

@property ball.oinflate_msg "%N puckers up and inflate the %t."

@property ball.inflate_fail_msg "It's already inflated."

@property ball.deflate_msg "You deflate the %t."

@property ball.odeflate_msg "%N lets the air out of the %t."
@property ball.deflate_fail_msg "It's already deflated."

Pronoun Substitutions
To allow the most flexibility in the messages, we’re using a facility called pronoun

substitution, where the magic tokens %t and %N are replaced by the appropriate words.

There is an object on the MOO that can be referenced with the special notation

$string_utils. This object has a variety of verbs on it that are intended for programmers

to use as subroutines. This collection of string utilities includes the verb that does pronoun

substitution.

You run your string through $string_utils:pronoun_sub, and it produces a new string for

you with the pronoun tokens replaced with the desired nouns or pronouns. The

substitution for %N is the capitalized name of player (same thing as player.name), and the

substitution for st is the name of the direct-object (same as C this.name).

Now you have to rewrite the verbs to use the preceding properties, changing hard-coded
strings to $string_utils:pronoun_sub(this. message property).

#2361:bounce this none none

ile if (this.location == player)

2 if (this.inflated)

SIE player:tell($string_utils:pronoun_sub(this.bounce_msg)) ;

4: player.location: announce (

$string _utils:pronoun_sub(this.obounce msg));
a else

player:tell($string_utils:pronoun_sub(this.bounce_fail_msg)); [o>]

Chapter 14 ¢ Programming MOOs 347
QQ BBOGHOGHHQIOSHHOHOHOHLSHHOHHOHOHOVIHHHHHOHOOIHOSO

ae endif
8: else

he player:tell("You can't bounce a ", this.name,
" that you haven't got.");

10: endif

#2361:inflate this none none

1 if (this.location == player)

; if (this.inflated)

3: player:tell($string_utils:pronoun_sub(this.inflate_fail_msg)) ;

4: else

ie player:tell($string utils:pronoun_sub(this.inflate_msg)) ;

6 player. location: announce(

$string _utils:pronoun_sub(this.oinflate_msg)) ;

The this.inflated = 1;

8: endif

9: else

10: player:tell("You can't inflate a ", this.name,

"without picking it up, first.");

11: endif

#2361:deflate this none none

ie if (this.location == player)

: if (this.inflated)

S player:tell($string utils:pronoun_sub(this.deflate_fail_msg)) ;

4: else
aye player:tell($string_utils:pronoun_sub(this.deflate_msg)) ;

6: player. location: announce (

$string _utils:pronoun_sub(this.odeflate_msg)) ;

T6E this.inflated = 0;

8: endif

on else
10: player:tell("You can't deflate a ", this.name,

Wi thOUte PLC KUN Odie cUp)y satplirS Grou) is

iis Vena zf,

More About Properties
When a property is inherited, the child gets its very own property of the same name. The

child’s property can have a different value than the parent, but initially the property is

clear.

A clear property has the same value as does the parent’s property. When the parent’s

property changes value, so does the child’s; a clear property reflects the parent’s property.

When achild’s property is altered to some new value, it’s no longer clear. From that point

on, it has its very own value, independent from the parent.

Sometimes it’s desirable to make a property clear again, getting rid of its unique value, and

having it just reflect the parent’s value. This is done with the @clearproperty command.

@clearproperty object.property

348 Part II] ¢ MUD Programming Guide
G9BOOOHHHOGHHHHOGHHHHHHHHVSOGHGHHHDDYODPQOGGHHSHIDOOSPOO PIG DIVWVWOSIA

Removing Properties
If you decide to change around the way an object works, and no longer need one of the

properties you had added to it, you can remove the property from the object.

@rmprop object.property

Built-In Properties
Objects have a few special properties that can’t, or shouldn’t be, manipulated with the

@set command. In most cases, there are special commands for setting these properties.

Setting these by hand either won’t work or might result in a mistake that would be very

confusing for you.

The name and aliases properties of objects are best manipulated with the @rename

command.

The contents property remembers what things are inside the object (whatever that means).

The trick here is that if object Ais in the contents list of object 8, then object A’s location

property should be object B; they should be consistent. Also, it doesn’t make sense for

some objects to be inside other objects, and strange things could happen. The @move

command knows how to keep these things straight.

The permissions properties of an object indicate what rights, if any, other players have to

mess with the object; use @chmod to control these.

The owner property indicates which player owns the object, is set with the @chown

command. (This command is only available to wizards. Regular players need the help of

a wizard to change ownership. On some MOOs, wizards have created an “Ownership

Transfer Station,” a special room programmed to provide automated assistance in this

area.)

The programmer property of a player can only be set by a wizard.

Advanced Verb Syntax
A single verb definition can match more than one verb in a sentence, if you want. This

can be used to make synonyms. The drop verb on $thing, for example, is the same verb as

throw. Rather than define two verbs that do the same thing, there is only one verb. The

trick is to put spaces in the verb name, which are taken to mean that any of the indicated
words should invoke the verb.

The name of the familiar drop verb actually is

"d*rop th*row"

Chapter 14 ¢ Programming MOOs 349
}®OOOVSHSHHSHVVWHHHGHO HGH FV OGGHHHHH OOH HGSHHHHHODHHHHHHOOOOOSOOE

Either drop or throw would match the verb in a sentence. You can use either word as the

verb name in a command.

The asterisks (*) indicate how the verb can be abbreviated in a sentence. You can type th

for throw, for example. This will only work if there are not conflicting verb abbreviations.

Prepositions
Verbs that allow prepositional phrases have argument specifiers, such as

this "with" any

meaning that a sentence with a direct-object is referring to this object, and a prepositional

phrase with is referring to anything. For example, if you defined a puncture verb on your

ball, using the preceding argument specifiers, the sentence puncture ball with needle

would match. Likewise, you could define a verb called toss with the following argument

specifiers

toss this at any

to match sentences such as toss ball at Kent.

Alternatively, an argument specifier such as

any "with" this

matches sentences in which the indirect-object was this object. If you had a hammer object,

you might define a hit verb with this argument specifier, so that you could hit ball with

hammer.

The following is a complete list of prepositions:

with/using

at/to
in front of

in/inside/into
on top of/on/onto/upon

out of/from inside/from

over

through

under/underneath/beneath

behind

beside

for/about

is

as
off /off of

Making Generic Objects
Generic objects are objects that are not intended to actually be used, but are for making

children. Generic objects typically start out as a regular one-of-a-kind object like your

beach ball, and then are re-programmed so that any children will be easy for their owners

350 Part Ill © MUD Programming Guide
DDODDOOOHS HHH DY OGSHHGHGO4O9G9GOFSS99BSO99GO99SE

to customize. You’ve done this with the beach ball by making it possible to change the

messages it gives when it’s bounced. The last step in “genericifying” your ball is to make

sure it has the right permissions.

Ownership and Permissions
Every object, verb, and property, is owned by someone (usually the person who created

it). Owners have control over their own objects, can add or remove verbs and properties,

reprogram verbs, and alter the values of their properties. Owners also can change the

permissions of their objects, properties, and verbs, to enable other players to do certain

things with them.

Every object has a bunch of permissions that dictate certain ways that it can be used by

other players on the MOO. It’s important to understand permissions so that you can

maintain appropriate control over your objects.

You change an object’s permissions with the @chmod command, as in the following:

@chmod object permissions

@chmod object.property permissions

@chmod object:verb permissions

The permissions are specified as the letter of the permission, such as r for readable,

preceded by a plus sign (+) to turn the permission on, or a minus sign (-) to remove the

permission.

You can check the permissions of an object with the @display (abbreviated ed) command.

@display object

The preceding line tells you the object number, object owner, object permissions, and a

few other useful things about the object.

@display object.

The preceding line displays information about the Objects properties, including the owner

and permission of each, and a (possibly abbreviated form of) each one’s value.

@display object:

The preceding line displays information about the object’s verbs, including the owner,
permission, and argument specifiers of each.

Object Permissions
Objects can be readable (r), meaning that anyone can see the verbs and properties the
object has. Object also can be writable (w), meaning that anyone (not only the owner) can
add verbs and properties. You never really want an object to be writable, for reasons that
are explained shortly.

Chapter 14 ¢ Programming MOOs 351
) @OLGOOSOEWDWHOOHGHHSOOVHHGHHHHSOOVHHGHHGHHHOHOHHOO

An object also can be fertile (f), meaning that players other than the owner can create

children from it. (If an object is not fertile, then it cannot be the parent in a @create or

a @chparent Command.)

Most objects you intend to share should be readable, so that other players can see the parts

of the object, and get some idea of what it does.

@chmod ball +r

The preceding line makes the ball readable.

To enable other people to make their own objects, using your object as the parent, you

need to make yours fertile:

@chmod ball +f

The preceding line makes your beach ball a fertile object. Other players now can @create

their own beach balls, using yours as the parent.

Property and Verb Ownership
Every property and verb on an object is owned by some player. When those verbs and

properties are inherited by a child object, they still are owned by the original player.

The drop verb on $thing, for example, is owned by a special player named Wizard (#2). Your

beach ball inherited that drop verb, but drop on your object is still owned by Wizard.

The verbs and properties that you have defined on your ball, such as bounce, are owned

by you. If someone creates a child of your ba11, that child will have a bounce verb owned

by you, and a drop verb owned by Wizard.

Verb Permissions
Verbs can be readable (r), meaning that anyone can list their program, or writable (w),

meaning that anyone can change their program.

When a verb on your object executes, it does so with your power of attorney. It’s as though

you were performing the actions of the verb, legally speaking. Anything that you have

permission to do, your verb can do.

Writable Verbs Are Bad
It’s extremely important not to have writeable (w) verbs. If some object had a writeable

verb owned by you, anyone could write (reprogram) the verb to do whatever they wanted.

Because you would still be the owner of the verb, their program would have all the

permissions that you have!

352 Part Ill * MUD Programming Guide
OODOOGHlHHOGHHSSVOSHOSHSOHDVOCHGOHSODDOGSSOSHSVVOO

For example, only you have permission to change your player object’s description (with

@describe me as.., for example,). This also means that any verb you own also has this same

permission. If you had a +w verb, any player could reprogram it to change your description

without your knowledge (or send MOO e-mail with your name on it, or recycle an object

you own, or do any other thing that you could do). It could even change around the

permissions of your other objects, making more of your verbs and properties writeable!)

Why Verbs Need Your Permission
Verbs need to have your capabilities in order to get at the properties and other objects that

you also control.

Verbs on objects that you want other people to use, especially fertile objects, should be

readable. This way, other programmers can see how the object works. This enables the

other players to figure out how to improve the object (by adding their own verbs to their

children) if they want, and also provides some confidence that your verbs won’t do

anything undesirable.

Other Verb Permissions
Two more permission bits apply to verbs. These are not really permissions having to do

with ownership. Instead, these extra permissions specify how the verb behaves. (This

affects the verb owner as much as anyone else.)

The execute (x) permission allows a verb to be called by another verb, and is needed for

subroutines such as the announce verb on rooms. Normally, verbs do not have this
permission.

The debug (d) permission controls what happens to a verb it blows up due to a program-

ming error. Verbs usually have debug permission turned on. This means that if the verb

blows up, it will print out a backtrace, which is useful information to be given to the

programmer. If the debug permission is turned off, the verb will just silently blow up
without giving the player any backtrace.

Property Permissions
Properties have the trickiest kind of permissions. A property can be readable (r), meaning
that anyone can read its value, and writable (w), meaning that anyone can alter the value.

Writable properties are not used very often, but do not represent the same kind of security
problem as do writable verbs. You probably don’t want to make your object’s properties
writable.

A property that is not readable cannot be read by anyone except the property’s owner (you,
for example). However, verbs owned by the same player can get at those properties, just
as the player could. In more complicated types of objects, it’s important that players not

Chapter 14 ¢ Programming MOOs 353
@@DOOPOGOHOGHOYDHHOOGHOGOOOHHHHHOHOLIGHHHHOSH OOOH HHHHOOHOOOH OOOO!

be able to read properties directly. Instead, a verb would be provided for them to use the

information.

Unreadable Properties
An object, for example, might have a property called dates that keeps track of secret

romantic dates made between players. The dates would be unreadable (-r), so nobody

(except the object’s owner) could read it directly. The object would have a rendevouz verb

that would tell you when and where your admirer wanted to meet you, and allow you to

complete making a date with that player. Naturally, the rendevouz verb would be

programmed to check which player you were, and only give you information about your

own dates. Because rendevouz and the dates property are both owned by the same person,

rendevouz can both read and write the secret information in the property. The information

is kept secret, even though anyone can use rendevouz. Normally, however, properties are

readable.

Inherited and Changeable Properties
When achild is created from an object, all of the parent’s properties are inherited, too. This

means that the child will have properties with the same name as all the properties that

its parent has. The child’s properties are separate from the parent’s properties; they just

have the same name.

In the virtual world, the child represents a different object than its parent. Even though

two beach balls might look the same, and do the same kinds of things, they are certainly

not the same object. The properties remember the object’s location, description, and

everything else about it. So each object’s properties are unique to it.

Even though an object’s properties are its own, however, those properties might not

necessarily be owned by the object’s owner. Each property is or is not changeable. The

changeable (c) permission determines who controls the property.

If a property on a parent is not changeable, then the parent continues to control the

property on its children. Each child inherits the property, but the child cannot control it:

only the parent can alter the value of the property. The parent remains the owner of the

inherited property. This allows the parent object’s owner to retain some control over the

children.

Suppose that you had a generic doll object with a property called hair_color. If that

property was not changeable, when someone created their own doll, that player would

not be able to change the doll’s hair color. Instead, perhaps the parent would have a dye

verb that alters the hair_color property, but would only allow certain colors. The child

inherits the dye verb, which also is owned by the property. Any player can use dye to

change the hair color of his or her doll, but he or she can’t write their own verb to directly

alter their doll’s hair_color. The dye verb works because both dye and hair_color are owned

by the parent, and they are designed to work together.

354 Part Ill © MUD Programming Guide

BOBWQOGEOHOHHGHHHVOPHHHHHHY BOPHHHOHHDOHHSHHSHGHIDVWOE

By contrast, if the hair_color property on the generic doll was changeable, then any child

dolls would have direct control over their hair color. That player could, for example, use

the @set command, or write their own verbs, to alter the hair_color property.

Changeable properties are owned by their object owner, not the parent’s owner. For

example, the drop_succeeded_msg property on your ball, was inherited from $thing (which

is owned by a player usually named Wizard). But drop_succeeded_msg is a changeable

property, so when it appears on your ball, it’s owned by you, Reader.

Generally speaking, properties that are used as messages should be changeable.

The @property command, which creates new properties, normally sets the permissions to

rc (readable and changeable) so that anyone can read the properties and so that children

can change their own properties’ values.

@d ball.bounce_msg

.bounce_msg Chris (#91) Rae "You bounce the %t".

SH A Cee i oe Oi AUMTSING dls cree= Sia alot alarm aia ieinta et miami

Your beach ball’s properties are readable and changeable, as they should be. When a player

makes a child of your beach ball, he or she will be able to change its description and its

messages.

Nonchangeable Properties
Not all properties should be changeable: sometimes the parent needs to have control over

them. A classic example from the early days of LambdaMOO involves a radio. The radio

had a verb tune that tuned the radio, and a property channel that remembered the channel

to which it was set. The tune verb would, of course, change what was in the channel

property. The owner of the radio object did @chmod radio +rf, making it readable and fertile,

so that others could make their own radios from the parent radio.

Mysteriously, the tune verb didn’t work on any of the child radio objects. The problem was

that the channel property was changeable (had +c permission); the owners of radio objects

owned the channel properties on those objects. The tune verb, however, was owned by the

original parent radio’s owner. tune could not change the channel in anyone else’s radio—

that property had a different owner on every individual radio.

To fix this, the owner of the parent radio made the channel property unchangeable by doing

@chmod radio.channel -c on the parent radio object.

That fixed the problem for any new children of that generic radio. The new radios worked

because the channel property on the children was still owned by the same person who

owned the tune verb on the parent radio.

(Players who had already created child radios had to recycle them, however, because their

channel properties were still owned by themselves. The parent radio owner couldn't fix this

for them. These players just had to create new radios after the parent had been corrected.)

Chapter 14 ¢ Programming MOOs 355
DOGO ®OVOGOH HOHHGHHHOHSOSYVHGHGHOHHOOHVOHHHHHOOOOSOOOE

In situations in which a verb is designed to work with a property, the verb and the property

need to be owned by the same person. Both the verb and property have the same owner,

and they work together, like in the dates and rendezvous example, mentioned previously.

Exploring an Object
We've mentioned a variety of commands for exploring objects that you come across. This

section contains summaries of those commands, and a few more.

look object

@examine object

The first and most obvious thing to do with an object is to look at it. But you can use the

command @examine (abbreviated @exam) on an object to get a little more detail. @examine tells

you the object’s name, aliases, objnum, who owns it, and its description. @exam also tells

you the contents of the object (and their objnums), if any.

@exam also tells you the obvious verbs on the object. Obvious verbs are ones that are

readable and can be invoked by players as command sentences. (Subroutine verbs are not

included.)

look watch

A handsome gold watch with a leather strap, featuring the face of

Lee Kopman. As you inspect the watch more closely, the face of Lee

looks up and whispers, Psst, "Tue Apr 4, 1995 10:21am EDT (3:21pm GMT)".

@exam watch

Lee Kopman watch (#15287) is owned by Spacy (#57882).

Aliases: Lee Kopman watch and watch

A handsome gold watch with a leather strap, featuring the face of

Lee Kopman. As you inspect the watch more closely, the face of Lee

looks up and whispers, Psst, "Tue Apr 4, 1995 10:21am EDT (3:21pm GMT)".

Key: (None.)

Obvious Verbs:
point <anything> to watch
@basic_description/@full_name/@short_name watch <anything> <anything>

@timezone1_standard/@timezone1_daylight/@timezone2_standard/
@timezone2_daylight watch <anything> <anything>

@hour_format/@date_format watch <anything> <anything>

@timezones watch
wear/remove watch

put watch on

put on watch

take watch off

take off watch
@carried_msg/@worn_msg watch <anything> <anything>

@says_msg/@whispers_msg watch <anything> <anything>

read watch
time <anything> with watch

g*et/t*ake watch

d*rop/th*row watch
gi*ve/ha*nd watch to <anything>

356 Part Ill * MUD Programming Guide

BOS WOOLHGOHHHHHOOIHHHHHFDHDSOSGSHHIHPD DOS OGHGHGIBIVIOIOES

The écontents command tells you the contents (including the objnums) of an object. You

can look inside any object this way, whether or not it’s a $container.

@contents object

You use the @display command to get information about verbs and properties. After

object, you can enter a colon (:) to get information about verbs, or a period or dot (.) to

get information about properties. For inherited verbs and properties, use semicolon (;)

and comma (,), respectively. Youcan combine those, (@display something.:;, for example)

to show the something’s properties, verbs, and inherited verbs.

@display object

You can also get information about a specific verb or property by naming it, such as

@display something:drop to get information about the drop verb.

@display shows the name of the verb of property, who owns it, and what the permissions

are. It also shows property values and verb argument specifiers.

The @list command shows you the program for a verb.

@list object:verb

The @parents command shows all the parents of an object, back up to the Root Class. This

is useful when trying to figure out how to make an object that is like one you have seen,

because you can figure out what the appropriate parent object should be.

@parents object

The @kids command shows the children (but just immediate descendants, one level down)

of an object.

@kids object

Some MOOs have additional commands (on feature objects) for finding out more

information about descendant objects.

eval
The eval verb is a handy tool available to programmers that enables you to type ina MOO

programming expression (that might appear in the middle of some verb) and see the

results immediately.

eval 7*6

=> 42

You also can use it to examine and alter property values. (Note that eval doesn’t know the

names of objects; you have to use objnums.)

eval #2361

=> #2361 (beach ball)

bounce ball

You have to inflate a beach ball before it will bounce!

Chapter 14 ¢ Programming MOOs

eval #2361.inflated

=> Q

eval #2361.inflated = 1

eval #2361.inflated

=> |

inflate ball

It's already inflated.

Expressions and Basic Data Types
The MOO language can manipulate several different types of data, such as integer

numbers, strings, lists, and, of course, objects. Programmers who are familiar with other

computer languages will find the usual arithmetic and logic operators used to form

expressions, along with a variety of built-in functions. Learning to write complex

programs is beyond the scope of this book, but some of the basics are mentioned, just to

give you an idea of what’s available. For an in-depth discussion, consult the LambdaMOO

Programmer’s Manual (see Appendix A for a pointer to a WWW version of this).

Expressions
An expression is a piece of a program that computes any type of value. 1+1, for example,

is an expression. (The value of that expression is 2, last time anyone checked.)

When you call built-in functions, they also return a value, and can be used as expressions

(or as parts of larger expressions).

Subroutine verbs also can return a value. This is done with the return statement,

return expression"

which causes the verb to finish at that point, giving the value computed by expression.

Assignment
Variables are brought into existence simply by naming them in an assignment statement.

For example, the statement

x = 3;

creates a variable x and assigns it the value 3.

The assignment statement = also is used to alter the value of a property, as in the following

example:

this.inflated = 1;

357
2SGODSSOS9OSSHS HOG 9G 9 99HSSH9OC9O9SHS0G008OHHO99900089000'

358 Part II] ¢ MUD Programming Guide

GODBOHOOHHHHHHH OHH GHHGSHHH 9OGOSHSSIDVVOPBSSG9SVBIOOGS

Arithmetic
The arithmetic operators include + (add), - (subtract), * (multiply), and / (divide). There also

is % (remainder). You can use parenthesis to control the precedence of the operators in the

usual way.

eval 1+2

=

eval (7*6) + (100 - 50)

=> 92

eval 10%3

=> |

The usual comparison operators (>, <, >=, <=) are naturally available. Remember that equals

is ==. B. Don’t confuse == with the assignment operator =. The not equals operator is

written !=.

Comparison operators return a @ (false) or a 1 (true).

eval 1 == 2

=> Q

MOO does not support floating-point numbers (numbers with a decimal point, such as

2.50); it only supports integers, such as 69.

Logical Operators
MOO has the usual logical operators familiar to programmers: && (and), || (or), and ! (not).

eval 1 && 2

eval © && 2

eval !(2 > 3)

Chapter 14 ¢ Programming MOOs

Objects Are false
An objnum is considered a false value in a logical expression.

valid(object)

In verbs, it’s often necessary to check whether a variable holds a valid (good) object. For

example, an iobj might could either be a valid object, or could be $nothing. The valid

operator performs this test. valid evaluates to 1 (true) if object is a valid object, or 0 (false).

Player Objects
The following determines whether object is a player; it returns 1 if it’s a player, or @ if it’s

some other type of object.

is_player(object)

Conditional expressions
The following code evaluates the test-expr, and if it is d, evaluates and returns then-expr;

otherwise, it evaluates and returns else-expr.

test-expr ? then-exprjelse-expr

The following example computes 1+1, and if the answer is 2, returns the string old math.

If you should happen to find that it returns new math, we’re all going to be in trouble.

eval ((1+1) == 2) ? "old math" | “new math"

=> "old math"

Strings 9g
A stringis bunch of letters, numbers, spaces, and punctuation. Typically, it is several words

or a sentence. Strings are enclosed in quotation marks.

eval "this is a string"

=> "this is a string"

player:tell("this is a string")

this is a string

If you want to put a quotation mark (") inside your string, you need to precede it with a

backslash (\).

player:tell("this is a \"string\"")

ehdSetS a eS timenO

You can concatenate (append) two strings together with the + operator.

eval "this" + "that"

=> "thisthat"

359
2282S SSSSGE GOOFS 9SSGSGGH HOO GSSHHHH009 099GS8S0000000'

360 Part Ill © MUD Programming Guide

BB WQOLVOEOEHHHHYOHIOOHOHGHHHDVIOOPIGOHHGHIDVOPSGGOGOBDBWGVS GO IIVIOS

To find the length of a string, use the length operator.

eval length("abcdefd")

=>.

You can use indexing to select just part of a string, either a single character or a range of

characters.

eval "“abcdefg"[2]

=> "pt

eval "abcdefg"[2..4]

=> "bcd"

eval "“abcdefg"[4..length("abcdefg")]

=> "“defg"

Null strings, such as "", are considered false.

Lists
MOOs provide for ordered lists. A list can contain any kind of MOO data type, such as

numbers, strings, objnums, or even other lists.

The following is a list of numbers:

{2 O}

The following is a list of objects (objnums):

{#2361, #1007}

The following is a list of lists of objects and strings:

{ {#2361, "ball"}, {#1007, "Reader"} }

Properties often contain lists of information, which could represent the members of a

club, the colors of a rainbow, or a list of tricks that a virtual puppy dog has learned.

Lists can be indexed, spliced together, and so on, in a manner similar to strings.

The length function finds out how long a list is.

Empty lists, such as {}, are considered false.

for Statements
One of the most common things to do with a list is to go through the entire list, repeating
some action for every element in the list.

for variable in (expression)

statements to do

endfor

Chapter 14 ¢ Programming MOOs 361
‘2 OBSGQGOVODDISOHSOSOOHVOHGHHGS OOH VHHHHHHOOHSHHHGHOHHOOOSOOOE

The for statement works through the elements of a list, performing the statements to do
for every element in expression (which should be a list of some kind).

The following program, for example, counts the number of players and things in the room
that you currently are in.

number_of_players = Q;

number_of_things = 0;

for something in (player.location.contents)
if (is_player(something))

number_of_players = number_of_players + 1;
else

number_of_things = number_of_things + 1;
endif

endfor

player:tell("There are ",number_of_players," people and ",

number_of_things," things in here.");

This program creates two variables to count the two different types of things as it comes

across them; it starts those counts out at zero. You use the for statement to create a variable

named something, which contains, one at a time, all the things in the room. (The player

has a property location, which is the room the player is in. This in turn has a property

contents, which are the things in the room.) The if statement uses the is_player function

to test whether each object is a player, and counts them appropriately. When the for is

done, a message that tells you the answers prints.

tostr
You use the tostr operator to convert various types of objects, especially numbers.

eval tostr(3)

=> Wey

Other Built-In Functions
The commands that you have learned, such as @chparent and @property, actually are verbs

(most of which are defined on your player object). These verbs work by using low-level

built-in functions with names, such as create, chparent, properties, set_verb_args, and so

on.

You use the moveto built-in function to move objects from one location to another. This

function keeps the location and contents properties related correctly, so that something

doesn’t end up inside itself, or inside two different things.

Utility Objects
The MOO includes a collection of objects whose sole purpose is to provide a repository

of subroutine verbs that many programmers will find useful to call from their own verbs.

362 Part IIl_ © MUD Programming Guide

1D @®VQOOOHHHHHGOOOOHHGHH HY OOOOH HGHH9GBGOGGGB9IVSBBBSSOVGE

You can get a complete listing of these objects with help utilities. A few of them are

mentioned here.

Sstring_utils
Because messages are, ultimately, what the MOO is all about, $string_utils probably is the

most-used utility object.

pronoun_sub
In particular, the pronoun_sub verb is commonly used all over the place to make message

properties into good messages. Your beach ball messages used this facility.

$string _utils:pronoun_sub(string)

The preceding code line converts a string containing special markers (starting with the «

character) into a new string with appropriate words substituted. Here are some of the most

common substitution markers:

HM %n is replaced with the name of player.

M st is replaced with the name of this.

M@ «1 is replaced with the name of the location of player.

@ «d is replaced with the name of dobj, and %i is replaced with the name of iobj.

There also are pronouns appropriate for whatever player is using the verb at the moment:

@ The subject pronoun (“he,” “she,” “it”) is %s.

@ The object pronoun (“him,” “her,” “it”) is %o.

@ The possessive pronoun (“his,” “her,” “its”) is sp, or for the noun form (“his,”
I) tbs “ners,” “its”) 1s %sq.

@ The reflexive pronoun (“himself”, “herself”, “itself”) is sr.

If you want the substituted words to be capitalized, just capitalize the marker (as in %P).

If a player named ydus happened to be in a room called yduJ's Hairdressing Salon, for

example, a verb with this program

player: tell($string_utils:pronoun_sub("%L becomes too popular."));
player: tell($string_utils:pronoun_sub("%N is engulfed in flames."));

would produce the following output:

yduJ's Hairdressing Salon becomes too popular.
yduJ is engulfed in flames

Other, more complicated substitutions, also are available.

Chapter 14 ¢ Programming MOOs 363
DOWD DBSDGGSGLOOGVHGHGHHSOHHHHHGHHHHOOOHHHHOHHH OOO OOOO

Other String Utilities
english_list converts a list of strings, such as {first, second, third}, into a sentence
fragment such as first, second, and third.

title_list converts a list of objects, such as {#2361, #1007}, into a sentence fragment, such

aS beach ball and Reader.

Syou
The say_action verb on $you is another substituting facility that’s handy for messages.

The statement

$you:say_action("%N %<plays> the piano.");

produces

You play the piano.

on your screen, while everyone else in the room sees

Reader plays the piano.

In one fell swoop, this amazingly handy utility verb combines pronoun substitution

(including action words) and the work that would normally have to be done in two

separate statements (a tell and an announce).

Matching
The $command_utils, $match_utils, and $string_utils objects have verbs for matching word

strings with objects, in a way similar to what the server does with each sentence a player

types. These utilities are for programs that handle complicated sentences beyond the

server's capability.

A verb, for example, might want to handle sentences that include the names of players,
regardless of their location on the MOO. The server can’t match them unless the players

are in the same room as you. But because you know that, (the direct-object is

supposed to refer to a player, for example) your verb can be programmed to use

$string utils:match_player On dobjstr to perform that match yourself.

Sobject_utils
The $object_utils verbs are useful for programs that need to poke around at the MOO

world and figure out what types of objects things are, who the parents are, and how things

have been programmed.

$object_utils:isa(object-1, object-2)

364 Part Ill ¢ MUD Programming Guide

9DDOOWOOHHHH HD BOOOSHHGIDIOGSGHGIIB BVSBFBIIIBSISBSBIOoe

If object -1 is a descendant of object-2, then this verb returns a 1 (true). You can use this

to see if an object on which the verb is trying to operate is a type of beach ball or hammer,

for example.

Other Utilities
$list_utils and $set_utils have verbs for manipulating lists and sets of things.

$perm_utils are for verbs that need to perform sophisticated management of permissions,

such as carefully testing whether the player is allowed to use the verb.

Some MOOs have additional utility objects that they’ve defined. Some MOO’s have

changed around the way that the utility objects are organized, or details of how those

objects are used. Consult the help verb and your local wizards for more information.

Containers
Containers are objects that can have other things inside them. They are made out of the

$container Object class.

Children of containers that you might make could represent boxes, sacks, filing cabinets,

or anything else that you want to hold something. Containers have verbs for open and

close, and to put things inside and take them back out.

@create $container named glass,goblet

You now have glass (aka goblet) with object number #176

and parent generic container (#8).

@describe glass as "A tapered dessert goblet

Description set.

look glass

A tapered dessert goblet.

It is empty.

@create $thing named chocolate mousse,mousse

You now have chocolate mousse (aka mousse) with object number #177

and parent generic thing (#5).

@rename mousse to :chocolate,mousse

Name of #177 (chocolate mousse) is unchanged,

with aliases {"chocolate", "mousse" }

@describe mousse as "creamy chocolate mousse that you would love to eat

Description set.

put mousse in glass

glass is closed.

open glass

Chapter 14. ¢ Programming MOOs 365
1 @ QOD WVOSGGHGGOGIHDHHOGHGHGHVIHHHGHGHGHGHOO9HOSHOHOOO OSE

You open glass.

put mousse in glass

You put chocolate mousse in glass.

look glass

A tapered dessert goblet.
Contents:

chocolate mousse

Note that $root_class (and therefore, every MOO object) has a contents property that

could have a list of things in it. For players, the contents are the things they are holding

(their inventory). The contents of a room are the things that are inside the room (players,

things, and so on). But these objects are not, strictly speaking, containers, because they

are not descended from $container; for example, they don’t have the put and get verbs that

containers have.

Overriding a Verb
It doesn’t make too much sense to open and close a goblet. You can change the way your

container works so that it is always open.

Create a new verb called close on your glass.

#176:close this none none

ie player:tell("Goblets are always open on top, silly!");

This verb overrides the close verb that was inherited from $container. Now if anyone tries

to close the glass, they will just see

Goblets are always open on top, silly!

An Improved Container
You can improve the way the glass is described so that you can see the description of its

contents. The verb that controls how the glass appears was inherited from $container, and

is called look_se1f. The following code shows you how to redefine look self On your glass.

#176:look_self this none this

1: pass();

2u if (this, contents)
3: player:tell("Inside is ", this.contents[1]:description(),".");

4: howmany = length(this.contents) ;

4: if (howmany > 1)

ae player:tell("It also contains:") ;

6: for thing in (this.contents[2..howmany])
ae player:tell(" ", thing:title());

8: endfor
9: endif

10: elseif (msg = this:empty_msg())

ale player:tell(msg) ;
1225 .enGist

This is a pretty complicated program and requires some explanation.

366 Part Ill © MUD Programming Guide

D®QOQOOHHOHHHGVDLIOGHHGHOHID VQOPHOGHDDIWVVDPOOPIDOS

The first thing that happens is that you call the built-in function pass. pass calls your

parent’s look_self verb. The first thing that happens is whatever would normally happen

if you had not written a look_se1f for the glass. pass is a very powerful feature of the MOO

language, enabling you to add behavior to a verb, without duplicating the programming

for all the old behavior, as well.

The outermost if statement checks to see if anything is inside the glass (if anything is in

its contents property). If something is inside, the verb prints out Inside is, followed bya

description of the first thing it finds inside. Notice the call to the description verb of

whatever is the first [1] thing in the contents. description is a verb that returns a string that

tells you what something looks like. Once that is done, you find out how many things are

in the glass’s contents property.

Another if statement checks to see if there is more than one thing. If so, the verb continues

on with a for statement that runs over each of the contents. It starts with the second thing

[2. .howmany] and goes through all of them. For each thing, you print out its name (given

by its title verb). Some spaces make this indent nicely.

If there wasn’t anything in the glass, the elseif takes over. A variable named msg is created

and assigned the message that comes from glass’s own empty_msg verb. Once that is set up,

if the variable msg is false, the verb skips down to the endif. Otherwise, it prints out msg,

which presumably says something about the glass being empty.

look glass

A tapered dessert goblet.
Inside is creamy chocolate mousse that you would love to eat.

Bugs
When a verb doesn’t do what it’s supposed to, the verb has a bug. Bugs are often hard to

find.

If you type in program that doesn’t work, the server will complain about it, and refuse to

install it on the verb. You typically will get an error message about Parse error, telling you

which line the problem is on.

One of the most common parse errors is forgetting to close all the parenthesis in a

statement (the kind that has many parts (of some complicated expression)). Count your

parenthesis carefully.

Another common mistake is to leave out the semicolon (;) at the end of a statement. A

variation on this theme is to add an extraneous semicolon where it doesn’t belong (for

example, after a keyword like for or endif).

Chapter 14 © Programming MOOs 367
1 @ OOO GO OQVQIHHOGHOLV9HHOSHOOOHOOOG:

Runtime Errors
After a verb is programmed, it could blow up with some error message, giving a backtrace

that tells which line of which verb had the problem. This doesn’t mean the line in

question is necessarily wrong, but by the time you got to that line, something had gone

bad, and the program couldn’t proceed any further.

The most common runtime errors are Variable not found, Property not found, Or Verb not

found. These often indicate a spelling mistake in your program.

Another one is Type mismatch, meaning that, for example, you used a number where a

string was expected, or a list where an object was expected.

The error Incorrect number of arguments may mean that you left out a comma in a call to

a built-in function of verb.

Other Problems
Areally insidious problem is mistaking = for ==. The former assigns a new value toa variable

or a property, while the latter tests to see whether two things are equal. Mixing up those

two in your program can have bizarre consequences, even if the verb doesn’t actually

blow up.

quota and @audit
The @audit command gives you a list of all of the objects that you’ve created, tells you

where they are presently located, and how much quota they are using.

Because the resources of the MOO are not infinite (there’s only so much memory and disk

space), players are given a quota. quota translates roughly into how much disk space on

the MOO your objects can use. The important thing to know about quota is that it’s a

personal limit, and you can use yours up. If you run out, you will have to ask whoever is

in charge (your local wizard, for example) for more disk space.

The e@quota command tells you how much disk space you have used up, and how much

you have left.

Different MOOs measure quota different ways. For example, some MOOs count the

number of objects that you’ve created. Others count exactly how large (in bytes) all your

possessions add up to be.

The error message Object ownership quota exceeded means that you ran out of quota,

presumably while trying to @create a new object.

368 Part Ill © MUD Programming Guide
19OOOOHHOHHHHGH9 OOS OO G99F89 OSS 9SOSSOO9 8S S0SSS820008

@copy
You can copy verbs from one object to another with the @écopy command; however, this

is not recommended. If you think you want to copy a verb, you probably are wrong.

Almost always, you should be making the object that you want to copy the verb to a child

of some ancestor of the other object. Verbs are meant to be inherited, which does not make

a copy. Copying verbs wastes MOO resources.

Copying verbs also may involve copyright issues. Generally speaking, people own the

verbs that they write. If you want to copy something, be sure that you have permission
from the author before doing so.

Magic Numbers
Players like numbers that are interesting or easy to remember, but the MOO’s @create

command dishes out whatever number happens to come up next.

Some MOOs have a special object that you can use rather than the @create verb, if you
would like your object to have a particularly memorable number. For example, it might
be a room that you go into and type some incantation like get 3000 from barrel. Not all
of your objects can have memorable objects, but it’s not a bad idea for generic objects that
you intend to share with many people.

Magic numbers are mentioned here mostly to remind you that it is considered highly anti-
social to sit around doing @create and @recycle, waiting for a good number to come up.
On many MOOs, that sort of behavior will get you thrown off!

Ticks
When a verb is invoked, it is only allowed to execute for a limited period of time, measured
in mythical units called ticks. If your verb doesn’t finish whatever it has to do in its allotted
number of ticks, it will blow up. Trying to do something to every player on the MOO is
a typical way of running out of ticks. There are techniques for advanced programs to
reschedule themselves and get more ticks, but it’s often debatable as to whether it’s a good
idea. The MOO is really designed for executing relatively quick verbs.

Forks
It’s possible for a verb to do more than one thing at a time. This works by forking off part
of the work to be done in parallel.

Chapter 14 ¢ Programming MOOs 369
DQODDOWPOOHOHHHHVOYIOHGOGHHOOYHOHOSHOOOHOOOG!

An example would be a ball that continues to bounce, even after the person who was

playing with it has left the room. Another example would be a puppy dog, or perhaps a

scary pirate, that wanders around the MOO all the time.

Summary
This chapter has provided you with a short introduction to creating new MOO objects,

modifying existing objects, and programming the objects to do what you want. If you

want to pursue the topic further, there are several online sources for more information.

See Appendix A for pointers.

n
iy i. ; Ps - a _ aa) a) ae

>| loa ae ser - - — ad ihe ‘ite) an oJ »

See ee ee ee
or price hab aane ee

5

2

wo
aE ee = "iy

; ae: : eee
woe | £6 © ows Ses §) a se

“ os SVC tate ae “2

=

> x. — Marsbe te

> ™ ig :

: or 1 ms Nola) >:

=. Ore Qe
ia > OT ot ltet?) tg Baewt:

ee ee)

CHAPTER

MUCK AND
PROGRAMMING

By Joseph Poirier

Two types of MUDs that you will find as you explore various MUD

environments are MUSHes and MUCKs. Both are TinyMUD-style

MUDs that tend to promote social interaction and world-building

over combat.

MUCK is a spin-off of TinyMUD, and initially was written by Stephen

White. It is based on the concept of MUCKers. MUCKers have

programming privileges and are allowed to “muck” around with the

database. It has its own programming language, TinyMUF. MUF

stands for Multi-User FORTH.

One of the most popular MUCKs is FurryMUCK, where everyone plays

anthropomorphic animals (animals with human characteristics).

MUSH originally was written by Lawrence Foard, and stands for Multi-

User Shared Hallucination. It allows for triggered events and special

objects called puppets. Many other programmers have since added to

the original code. There are several popular MUSHes, including Deep

Seas, PernMUSH, and TinyTIM.

372 Part Ill ¢ MUD Programming Guide
)@ @ © BOOHHHGOHHGVOSOHGHGHGHHHD HOG OGHHGHIDLVOOSO HO!

This chapter teaches you how to use and program MUSHes and MUCKs. You learn how

to set up your character, build rooms, create objects, and program the MUD. Most topics

have examples to help you understand the concepts.

This chapter is intended for intermediate MUSH and MUCK users who have connected

to a MUSH or MUCK before, experimented with simple commands, perhaps, such as

talking and looking, and now want more detail. If you are a beginner, you may want to

read the chapter on MUDs, “Interactive Multi-User Realities: MUDs, MOOs, MUCKs, and

MUSHes,” in an earlier Sams book, The Internet Unleashed. That chapter introduces basic

MUD concepts more fully, and lists various MUD-related Internet resources you can look

into, such as newsgroups, FTP archives, and Frequently-Asked Questions (FAQs).

Finally, throughout this chapter, you will be using a character named Speedy.

Thanks

Su

Some portions of this chapter used help files from TinyTIM. Special thanks to Sketch the
Cow, one of the original wizards on TinyTIM, for providing this material. TinyTIM is the
oldest continually running MUSH still in existence. It was founded in 1990. Its help files
are not only useful, they also are amusing to read. You can reach TinyTim at tim.org, port
5440.

mmary of Basic MUSH and MUCK
Commands

To refresh your memory, it may be useful to review the basic MUSH and MUCK
commands. These basic commands are summarized in Table 15.1.

Table 15.1. Summary of Basic MUSH and MUCK Commands.

Command Abbreviation Description

drop object Drop the object

examine object Obtain detailed object info

get object Take the object

go direction direction Move in the given direction
help Access heip facilities
home Return to your home room
inventory i Inventory

look ib Look at room description
look object 1 object Look at object description

page player = message p player=message Page player with message

Chapter 15 * MUCK and MUSH Programming 373
2@OOOLQ®HOHPOOHHGHOOVIHHHGHHSOOQIGHHOHHHOHOHSOGOE

Command Abbreviation Description

pose message message Act out the given message

QUIT Quit playing the MUD

say message "message Speak the given message

take object Take the object

whisper player = message w player=message Whisper message tO player

WHO See who else is playing

Note that the aUIT and wHO commands are in uppercase.

MUSH and MUCK Basics
There are some basic concepts that you should understand before you begin programming

objects on the MUD. In this section, you review basic concepts, such as objects, messages,

@comman4ds, actions, locks, substitutions, and other topics.

Basic Objects
MUSHes and MUCKs are composed of four types of things: players, rooms, exits, and

objects. Players are characters like yourself, all interacting with the MUD at the same time.

Rooms are the areas that you explore in the MUD. Exits connect rooms to one another.

Objects are comprised of everything else on the MUD. You can create rooms, exits, and

objects, and then you can program them to work however you want. That’s what this

chapter is all about.

Messages
As you play the MUD, your character receives various messages from it. Some of these

messages are generated by the MUD from such things as room descriptions, object names,

and so on. Other messages are generated by other players. Because events are happening

in real-time, you may be sending one message while receiving other messages. You could

be talking to someone at the same time that three other people are trying to page you, for

example.

Object Numbers
The MUD actually is a big database. Each object has an object number. This number is used

to find the object in the database. You can program an object to refer to another object

374 Part Ill ¢ MUD Programming Guide
D®DOOOGOHHHHHOVHVLWPOIGHOHHHHVVOSOGOSHOGHLOO

number. In some help systems in a MUD, and in some help guides, the object number is

called the dbref (database reference).

Money
Most MUDs also have some form of money. This money is needed to create new objects,

pay for other objects, build rooms, and so on. You usually can obtain money at random

intervals just by wandering around the MUD. This money can be of whatever form the

MUD Administrator set up when the MUD was created, such as dollars, pennies, cookies,

or new types. If a MUD is based on a particular theme, then the money also may be based

on the theme. In the examples in this chapter, credits are used as the monetary type.

Home
Your player has a home where it resides. Initially, it will be some common room in the
MUD, but you can reset your home to a different room. You can jump to this home room
by typing home.

6 @

Killing
Some MUDs allow players to kill each other. Other MUDs frown on this. The command
to do this is

> kill player = money

where the money spent is the percentage chance of success. Spending 100 credits will
ensure the other player’s demise. Killing something sends it home. The killed player is paid
half the amount of money that you spent, as a form of insurance.

@Commands
In addition to the basic commands given earlier, there are many commands that begin
with an “at” symbol (@). These commands are known, appropriately enough, as “@com-
mands,” and they generally indicate that the command operates on the MUD database
in some manner.

Actions
Some @commands cause actions to occur. For example, you can cause a message to be
displayed by using the emit command, @emit message. This command displays the message
to everyone in the room.

> @emit A sudden silence descends upon the crowd.
A sudden silence descends upon the crowd.

Chapter 15 ¢ MUCK and MUSH Programming 375
OO DOGOOHHGGHOHHHOOIVHHHOHHOVVHHOSHOHOHOQHOSOE Ad BS BS Oe

> @emit It's quiet. Too quiet.

It's quiet. Too quiet.

Action Lists
You can chain actions together by separating them with semicolons to create an action list:

> @adrop brick = @Gemit Hello ; @emit There ; @emit The end
Set.

> drop brick

Hello

There

The end

In the preceding example, the list of semicolon-separated @emit commands is an action

list. When the brick is dropped, the @adrop action list is executed.

Attributes
Some @commands set attributes on an object. An attribute is a property on an object. For

example, the @drop attribute sets the message that is displayed when a player drops the

object on which it is set:

> @drop brick = The brick falls to the ground with a THUD.

Set.
> drop brick

The brick falls to the ground with a THUD.

This message appears to the player who dropped the brick.

In addition, you also can set up the brick to display a message to everyone else in the room

as well as the player who drops it. To do this, use the @odrop attribute, as in the following:

> @odrop brick = drops a brick

Set.

This particular attribute prepends the output with the name of the player. Thus, if Speedy

drops the brick, everyone in the room besides Speedy would see the following:

Speedy drops a brick.

Finally, on a MUSH, there are attributes that execute action lists when they are triggered,

as in the following:

> @adrop brick = @emit PLUNK!

Set.
> drop brick
PLUNK!

Notice that these attribute commands follow a pattern. The basic attribute has the form

@xxx, and applies to the player who causes the attribute to be triggered. The second form,

@oxxx, begins with an o and applies to the “others” in the room. The third form, @axxx,

begins with an a and sets the action list associated with the @xxx attribute. @axxx attributes

are available only on MUSHes.

376 Part II] ¢ MUD Programming Guide

OG WOOSVHGHOHHHHHOVOOHGHSHOGVIVOSPGHGHHID DOG SOODSIVIVE Y

Pronoun Substitutions
Sometimes, when you are programming MUD code, you want to create messages that use

the name of the player that is using the object. Or perhaps you want to display a message

that depends on the gender of the player using the object. For these occasions, you use

pronoun substitutions.

Pronoun substitutions use special indicators that begin with a percent sign (*) to substitute

appropriate names and subject forms. For example, the *N pronoun substitution substi-

tutes the player’s name for the %n indicator:

> @emit %N is here! Look at %o!
Speedy is here! Look at him.

Each indicator has two types: uppercase and lowercase. Uppercase indicators, such as the

%N in the preceding example, substitute the appropriate pronoun with its first letter in

uppercase. Lowercase indicators, such as %o, leave the pronoun or name as it is—so aname

that begins with a lowercase letter would remain lowercase.

As a handy reference, Table 15.2 shows the different pronoun substitutions that you can

use in your messages and actions.

Table 15.2. Pronoun Substitutions for MUSHes and MUCKs.

Indicator Pronoun Substitution Examples

%N, %n Player’s name Speedy, Speedy

%S, %S Subjective form He/She/It/They, he/she/it/they

%0, %0 Objective form Him/Her/It/Them, him/her/it/them

%P, %p Possessive form His/Her/Its/Their, his/her/its/their

%A, %a Absolute possessive form His/Hers/Its/Theirs, his/hers/its/theirs

Locks
Locks stop players or objects from performing certain actions on other players or objects.

When you create a lock on an object, you are limiting how that object can be used.

When you lock an object, you also specify which key can be used to get past the lock. The

key can be another object, or a player, or a combination of objects and players. You can

program a lock to check to see if the player attempting to pass the lock is either the key

itself or is carrying the key.

Following is the format of the lock command:

> @lock object = key

Chapter 15 ® MUCK and MUSH Programming 377
D®QOOVDEHEHHSHOOWIOHHOHHH HOV HGHHHHHOOOOOSE

When you pass an object’s lock, you see the @success attribute of the object, and the other

players in the room see the @osuccess attribute. Additionally, the @asuccess attribute is

triggered in MUSHes.

When you fail to pass an object’s lock, you see the @fail attribute of the object, and the

other players in the room see the @ofail attribute. On a MUSH, the @afail attribute also

is triggered.

Table 15.3 shows some special characters you can use to specify the way in which locks

are passed.

Table 15.3. Specifying locks with special characters.

Character Meaning

& Boolean AND

: Boolean OR

! Boolean NOT

Database Reference

Player Named

= Is

+ Is Carrying

i Indirect

The = and + lock special characters apply only to MUSHes.

To see how to program locks, look at some examples. First, look at an example of the

simplest lock. If Speedy is object number #1111, and you want only Speedy to be able to go

through a special doorway, you could type the following:

> @lock doorway = #1111

You also could program this using the Player Named directive.

> @lock doorway = *Speedy

Or, if you want to program a treasure chest to need a skeleton key, you could specify that

the object is the key. Assume that the skeleton key is object number #2222.

> @lock chest==#2222 | +#2222

Or, perhaps you want to lock a platform to accept either a red gem with object #555 or a

blue gem with object #666, as in the following:

> @lock platform = #555 | #666

378 Part Ill © MUD Programming Guide

DHHOOOHGHHHHIYDVOOHHHGHH9 I VIOHDGOPSVS BOOS

As another example, perhaps you want to progranr a scepter so that it only works if you

do not have a Kryptonite object around. If the Kryptonite was object #3333, then

> @lock scepter = ! #3333

would lock it against the Kryptonite.

There are a few specialized forms of locks that are available on MUSHes. They are shown

in Table 15.4.

Table 15.4. Lock types.

Lock Type Syntax

Default Lock @lock/default object=key

Enter Lock @lock/enter object=key

Give Lock @lock/give object=key

Leave Lock @lock/leave object=key

Link Lock @lock/leave object=key

Page Lock @lock/page object=key

Tport Lock @lock/page object=key

Use Lock @lock/use object=key

Default locks are the locks that have been discussed so far. Enter locks determine who or

what can enter an object. Give locks determine who may give the object. Leave locks

determine who or what can leave an object. Link locks determine what can link to the

object. Page locks determine who or what can page an object. Tport locks determine who

may teleport to the object if the object’s LINK_0k flag is set. Use locks determine who or what

can use an object.

Only MUSHes have lock types other than default locks. For example, if you were on a

MUSH and you wanted to stop the character Goober from paging you, you could type

> @lock/page me=! *Goober

But wait! There’s more! You also can create indirect locks on MUSHes. These locks depend

on something else’s lock. To create them, put the e symbol in front of the lock. For

example,

> @lock portal = @#999

means “set the portal’s lock to be the same as object #999’s lock.”

Finally, you can specify certain attributes for locks. These attributes must be ones that can

be read on another player, such as @sex or @name. You can use asterisks (*) as wildcard

characters for pattern-matching of the attribute values. So, to lock a door so that only men
can go through, use the following:

> @lock door = sex:male

Chapter 15 ¢ MUCK and MUSH Programming 379
PHOOHS OOF O9HSOOS HOO GS 9OOG9HS9098999S9SG000008 Ze,

sa NS &

To lock a barn so that only objects with horse in their descriptions can pass, you would

use the following:

> @lock barn = desc: *horse*

Flags
Objects may have certain flags. Flags are used to set characteristics of an either/or nature

on objects, such as setting a flag to indicate that an object is or is not invisible. Various

flags are discussed later in this chapter, but a general explanation of the syntax is useful

at this point.

The syntax for turning a flag ON is

> @set object = flag

and the syntax for turning it OFF is

> @set object = ! flag

®

Teleporting
One special movement command that is available on MUDs is the teleport command,

which instantaneously moves you to a destination room, as in the following:

> @tel object = room

So, if room #333 was a Grand Ballroom, and you wanted to go there without wandering

through all the rooms in between, you could type

> @tel me = #333

On some MUDs, this command may be turned off.

You can only teleport to rooms that you own or rooms that have their yuMP_ok flag set.

How to Program Your Player
To learn how to program your player, begin by looking at the commands and attributes

that apply to a player. In the following examples, recall that you are using a character

named Speedy.

Once you obtain a new character on a MUD, one of the first things you should do is change

your password, as in the following:

> @password old-password = new-password

380 Part Ill e¢ MUD Programming Guide

GOYQOOOHHHHHGHIHVOOHHHHHIOIOVDPGHSHHDIOVOOSE

Keeping your password secret is just as important on a MUD asit is on a computer system.

If someone gains access to your character, they can impersonate you. They can harass

other players, say obscene things, and perhaps even get your character removed from the

MUD. Soitisa good idea to change your password initially, and from time to time, to make

sure no one gains illegal access to your character.

Next, set the description for your character. Following is the syntax for the @describe

command:

> @describe object = description

You can set the description for your example character, Speedy, with the following syntax:

> @describe me = You see a whirling, blurry, blue tuft ball of fur and bare feet!

> look me
You see a whirling, blurry, blue tuft ball of fur and bare feet!

Next, set the gender of your character with the ¢sex command, as in the following syntax:

> @sex me = male

Set.

The @sex attribute setting is based on the first letter of its setting. If the first letter is m or

m, for example, gender is considered to be male. If the first letter is F, f, wor w, then gender

is female. On some MUDs, if the first letter is P or p, the gender will be plural. Any other

values of the first letter will set the gender neuter.

You also should lock your character so that you can’t be robbed or picked up by another

character:

> @lock me = me

Set.

The special term me stands for your character.

How to Program Rooms
Players are not the only things on a MUD. A MUD also has many rooms for those players

to explore. These rooms give the MUD atmosphere and an identity. You can create your

own rooms on a MUD, too. You then can reset your home to one of the rooms you have

created.

Rooms are connected to one another by exits. You also can create exits and program them

to enhance the atmosphere of the rooms you are creating.

In this portion of the chapter, you will be creating several rooms, writing the descriptions

for them, linking them together by creating exits, and adding various other enhance-

ments to create a little scene. As you go through the examples, you will learn the

commands to build your own rooms. The portion of the MUD that you eventually create
is limited only by your imagination.

Chapter 15 ® MUCK and MUSH Programming 381

12QODSSHOOHHOSSYSOHHOHGHOHODIVOHSHGHOHOHHHHHGHHHHHOOOIOSE

This example will be a swimming pool with a few diving boards above it. You will be able

to jump into the pool and dive into it deeper. You will be able to jump off the diving boards

into the pool, too.

Begin by visualizing the pool scene (see Figure 15.1). Once you have an idea of what you

want to create, you can generalize it into the actual rooms and exits that you will need to

create. This is shown in Figure 15.2. Drawing out the system of rooms in this manner helps

you get the exits from room to room correct, since they should make topological sense.

Figure 15.1. High Diving Board

This is the visualization of the

environment.

Middle
Diving Board

Kiddie
Diving Board ‘

Poolside Poolside

West 1 East

Swimming Pool Swimming Pool
Shallow Side Deep Side

Swimming Pool

Deep Underwater

Figure 15.2. Hig h

Here are the rooms and exits of Diving Board

the environment.

Swimming Pool
Deep Side

down

Swimming Pool
Deep Side

Poolside East Poolside West

up

Swimming Pool
Deep Underwater

382 Part II|_ «© MUD Programming Guide
DOQOODOHHGHHHHOVOOHOGOHDWIOSGHPOHIVVO

Begin by constructing the pool. The pool itself is composed of three rooms. One room, on

the western side, depicts the shallow end of the pool. The eastern side of the pool is the

deep side, and is created using two rooms. The top room represents the surface of the deep

side, and the bottom room is the underwater portion of the deep end of the pool. The

command to create a room is @dig.

> @dig room-name

When you type this, a room with the given room-name is created. You also will be told the

object number of the new room.

First, create the three rooms that comprise the pool:

> @dig Swimming Pool — Shallow Side
Swimming Pool—Shallow Side created with room number #1200.

> @dig Swimming Pool-— Deep Side
Swimming Pool—Deep Side created with room number #1201.

> @dig Swimming Pool-—Deep Underwater

Swimming Pool—Deep Underwater created with room number #1202.

You then can write descriptions for each of the rooms. First, go to the room you want to

describe, and then set the room description by using the special room-name here, which

stands for the room that you are in. Note that your room numbers may be different from

the ones in these examples:

> @tel me=#1200

Swimming Pool—Shallow Side(#1200R)

> @desc here=You are floating in the shallow side of the pool. The pool gets deeper

to the east. You can see the blue and white tiles on the bottom of the pool clearly.
Set.

> @tel me=#1201
Swimming Pool—Deep Side (#1201R)

> @desc here=You are bobbing up and down in the deep side of the pool. The pool gets

shallow to the west. A diving platform rises above the water, to the east. You can

see the blue and white tiles on the bottom of the pool faintly through the shimmering
water below you.

Set.

> @tel me=#1202

Swimming Pool—Deep Underwater (#1202R)

> @desc here=You are swimming underneath the surface of the deep side of the pool. A
diving platform glints through the sparkling waters above you. You can see the blue
and white tiles on the bottom of the pool clearly.
Set.

It is assumed that teleportation is turned on in these examples.

You can’t simply walk into these rooms yet because you not have linked them to the rest

of the MUD using exits. So, for now, these rooms are not connected to anything. They are
floating in hyperspace, so to speak.

One way to connect your rooms to the rest of the MUD is to wander around and find a

hotel, apartment building, or similar place where you can get your own room. By

following the instructions at a hotel lobby, for example, a personal room will be created

Chapter 15 * MUCK and MUSH Programming 383
DOCOOSOVDSGHGS OH BG SGSHHSO0HH9SSSHSO9OGOSOOG

for you. You then can link the other rooms that you create to your new hotel room by

creating exits between them.

How to Program Exits
Next, you can connect these rooms to one another by creating exits between them. You

can create exits by using either a special form of the edig command, or by using the @open

command. Look at the syntax of the @open command, as follows:

> @open in1t;in2;in3;... = #other-room , out1;out2;out3;...

The in1;in2;in3;... portion is called the in-list, and the out1;out2;out3;... portion is

called the out-list. An exit from the current room to the room specified by the given other-

room number will be created. This exit will have the names specified in the in-list. Another

exit also will be created, from the other room back to the current room, and will be named

according to the out-list (see Figure 15.3).

Figure 15.3. in1,in2,in3....

The in-list and out-list of the Other Room

@open command. out1 ,out2,outs....

Each name in the in-list is an alias for the exit from the current room to the other room,

and each name in the out-list is an alias for the exit from the other room back to the current

room.

If you are on a MUSH, the first alias in the in-list, in7, is used in the Obvious Exits portion

of the current room description. Likewise, the first alias in the out-list, out1, is used in the

Obvious Exits portion of the other room description. Also, some MUDs do not allow you

to specify the out-list at the same time you construct the in-list. On these MUDs, you can

simply create the exits using two @open commands.

You must own the room from which you are trying to create an exit. You also must own

the room that you are linking to, or that room must be set LINK_OK.

You can leave off the out-list if you want. In that case, the exit from the other room to the

current room would not be created.

Using the @open commands, create the exits between the rooms that you have created.

Name the exits according to the diagram given previously in Figure 15.2.

First, you need to go to the shallow side of the pool.

> @tel me = #1200
Swimming Pool—Shallow Side (#1200R)

You are floating in the shallow side of the pool. The pool gets deeper to the east.

You can see the blue and white tiles on the bottom of the pool clearly.

384 Part Ill © MUD Programming Guide

OOVQQGOHHHHHDWOOHHHGHHHHHOSGHGHHGHGHYVOOSHIOSGHIIVOS

This room now is your current room. You create an exit from this room to the deep side,

and another exit from the deep side back to this room, as in the following:

> @open east;e;swim = #1201 , west;w;swim

Opened.

Linked.

Opened.

Linked.

The opened and Linked messages indicate that the two exits are being created and linked.

These two exits also have their own object numbers.

Now you can move to the deep side by going east!

> east
Swimming Pool—Deep Side (#1201R)
You are bobbing up and down in the deep side of the pool. The pool gets shallow to
the west. A diving platform rises above the water, to the east. You can see the blue

and white tiles on the bottom of the pool faintly through the shimmering water below

you.
Obvious exits:

west

Note that the Obvious Exits portion of the room description does not appear on MUCKs.

Next, create the exits from this room to the underwater portion of the deep side, as in the

following:

> @open down;d;dive;bottom = #1202 , up;u;rise;surface

Opened.

Linked.

Opened.

Linked.

Now you can go to the bottom of the deep end, and back up.

> down
Swimming Pool—Deep Underwater (#1202R)

You are swimming underneath the surface of the deep side of the pool. A diving

platform glints through the sparkling waters above you. You can see the blue and

white tiles on the bottom of the pool clearly.
Obvious exits:

up
> up

Swimming Pool—Deep Side (#1201R)

You are bobbing up and down in the deep side of the pool. The pool gets shallow to

the west. A diving platform rises above the water, to the east. You can see the blue

and white tiles on the bottom of the pool faintly through the shimmering water below
you.
Obvious exits:

west down

Now that the swimming pool is complete, you can build the diving platform structure.

To do this, you can use the form of the ¢dig command that also specifies exits:

> @dig other-room-name = in1;in2;in3;... , out1;out2;out3;...

This form of the @dig command creates a room whose name is specified by the

other -room-name, and it also creates two exits. One exit goes from the current room to the

See

Chapter 15 © MUCK and MUSH Programming 385
5O©LDSSHHHS GOSS OGSHOSSGH9F9 99999990999 99S98O900000080

other room, and has the aliases given by the in-list. The other exit goes from the other

room to the current room and has the aliases given by the out-list.

This command is not available on MUCKs; instead, if you are on a MUCK, @dig the room

and then link the exits using the @open command.

Using the edig command, you can create the diving platform. Assume that the surface of

the deep side of the pool is the current room.

First, create the east side of the pool:

> @dig Poolside East = east;e;out , west;w;in;swim;pool
Poolside East created with room number #1207.

Opened.

Linked.

Opened.
Linked.

> east
Poolside East (#1207R)
Obvious exits:

west
> @desc here = You are standing on the east side of the pool, near the deep end. The

pool is to your west. A diving platform rises above you here, reachable by a ladder.

Set.

Then create the diving platform, which is really three different rooms:

> @dig Kiddie Diving Board = up;u;ladder;board;platform;kiddie , down;d

Kiddie Diving Board created with room number #1210.

Opened.

Linked.
Opened.

Linked.
> up

Kiddie Diving Board (#1210R)

Obvious exits:

down

> @desc here = You are on the kiddie diving platform. The end of the platform is only

a few feet above the surface of the deep end of the pool. You can see higher diving

platforms above you. A ladder leads up to higher platforms, and down to the poolside.

Set.
> @dig Middle Diving Board = up;u;middle , down;d;kiddie

Middle Diving Board created with room number #1213.

Opened.

Linked.
Opened.

Linked.
> up

Middle Diving Board (#1213R)
Obvious exits:

down

> @desc here = You are on the middle diving platform, which hovers about twelve feet

above the surface of the deep end of the pool. Below you is the kiddie diving plat-

form, and above you is the ominous high diving platform. A ladder leads up to the

high platform, and down to the kiddie platform.

Set.
> @dig High Diving Platform = up;u;high , down;d;middle

High Diving Board created with room number #1216.

Opened.

386 Part Ill © MUD Programming Guide

GOQQOOHHHHHD HD OVOHHHGSHID VOI OPD OBS SB ISOOOE 2S OO

Linked.
Opened.

Linked.
> up

High Diving Board (#1216R)

Obvious exits:

down
> @desc here = You are standing cautiously on the highest diving platform! The pool

is about forty feet below you, and looks awfully far away! Other diving platforms are

below you, reachable by a ladder leading down.

Set.

Now that the diving platform is set up, you can create the links from each diving board

down into the deep end of the pool. Currently, you are on the highest diving board. The

deep side of the pool was room #1201 in this example.

> @open dive;jump;west;w = #1201

Opened.
Linked.

> down
Middle Diving Board (#1213R)

You are on the middle diving platform, which hovers about twelve feet above the

surface of the deep end of the pool. Below you is the kiddie diving platform, and

above you is the ominous high diving platform. A ladder leads up to the high plat-

form, and down to the kiddie platform.

Obvious exits:

down up

> @open dive; jump;west;w = #1201

Opened.
Linked.

> down
Kiddie Diving Board (#1210R)
You are on the kiddie diving platform. The end of the platform is only a few feet

above the surface of the deep end of the pool. You can see higher diving platforms
above you. A ladder leads up to higher platforms, and down to the poolside.

Obvious exits:

up down

> @open dive;jump;west;w = #1201

Opened.

Linked.

Note that these particular @open commands did not specify an out-list. That is because you

only want to create exits from the diving boards to the pool. You don’t want to be able

to somehow instantly go from the pool to the highest diving board!

Finally, create the west side of the pool, near the shallow end. You can get to the shallow

end of the pool by either moving there, now that all the exits between rooms have been

created, or by using teleportation.

> @tel me = #1200

Swimming Pool—Shallow Side (#120@R)

You are floating in the shallow side of the pool. The pool gets deeper to the east.

You can see the blue and white tiles on the bottom of the pool clearly.
Obvious exits:

east
> @dig Poolside West west;w;jout , east;e;in;swim;pool

Poolside West created with room number #1220.

Opened.

Chapter 15 © MUCK and MUSH Programming 387
DOODOGHVDVOGHHOGHOHOHVHHHHHOHGHOOH9HOGHOHOOOOOOOS

Linked.

Opened.

Linked.
> west

Poolside West (#122QR)

Obvious exits:

> @desc here = You are standing on the west side of the pool, near the shallow end.
The pool is to your east, and you can see a diving platform on the other side of the

pool.
Set.

NULL Exits
One way to make your rooms better is to display helpful messages to people when they

try to move in a direction that doesn’t exist in that room.

Usually, when a player tries to move in an invalid direction (a direction for which there

is no exit of that name), the MUD displays a default Huh? (Type 'help' for help) message.

A more user-friendly message might be You cannot go in that direction. To display such

a message, you can create a NULL exit.

To create a NULL exit, you first create an exit on the room and name it the various invalid

directions in that room. Lock the exit to #0, and set it DARK. Finally, set its @efail message

to the message that you want to appear when a player tries to go in that direction.

When someone tries to go in an invalid direction, the ¢fail message will be displayed to

them, because the exit is locked against them. The exit is set DARK so that it will not appear

in Obvious Exits or similar descriptions.

Asan example, consider the top of the diving board. You can go west and fall into the pool,

or you can go down the ladder, but you should not be able to go north, south, east, or up.

You can create a NULL exit to display a better message, as in the following:

> @tel me = #1216
High Diving Board (#1216R)
You are standing cautiously on the highest diving platform! The pool is about forty

feet below you, and looks awfully far away! Other diving platforms are below you,

reachable by a ladder leading down.

Obvious exits:

down dive
> @open north;n;south;e;east;e;up;u = here

Opened.

Linked.

> @lock north = #0

Locked.

> @set north = DARK

Set.
> @fail north = You cannot go in that direction.

Set.

Now that the NULL exit is set up, you can test it out, as in the following:

> north
You cannot go in that direction.

388 Part Ill # MUD Programming Guide

1DHDHOOHHHHHHHOOVVHHGHHHG VOSOHHGHIDD DIIGO O OC

> south
You cannot go in that direction.

> east
You cannot go in that direction.
> up

You cannot go in that direction.

NULL exits on the other rooms in this example can be set similarly.

Special Exits
You also can create special exits that display special messages that are similar to NULL

exits, as in the following:

> @open bounce

Opened.

Linked.

> @ lock bounce = #0

Locked.
> @set bounce = DARK

Set.

> @fail bounce = You bounce up and down on the diving board. BOING!

Set.

Now, when you type bounce, you see the following message:

> bounce
You bounce up and down on the diving board. BOING!

Enhancing Exits
You can define several attributes on exits so that messages are displayed to players who

go through them, as well as to people who are in the rooms that the player is entering and

leaving. By setting the exit attributes on your exits, you can add to the atmosphere of the

MUD.

There are three main types of exit attributes. The @succ attribute message is displayed to

a player when that player goes through the exit successfully. The @osucc attribute message

is displayed to the other players in the room that the player is leaving when that player

goes through the exit successfully. The @asucc attribute causes an action list to be

performed when a player leaves a room successfully.

The @asucc attribute is not available on MUCKs.

For the other side of the exit, the @odrop attribute message is displayed to the other people

in the room that the player is entering. The @adrop attribute causes an action list to be

performed when a player enters a room successfully.

Chapter 15 * MUCK and MUSH Programming 389
DP @OOQVOOGGHHSOOOGIOHHGHHHHOOHHHHHOHHOOHOSGOE

The @adrop attribute does not exist on MUCKs.

The @fail attribute message is displayed to a player when that player uses an exit

unsuccessfully. The @ofail attribute is displayed to other people in the room that a player

fails to leave. The @afail attribute causes an action list to be performed when an exit is used

unsuccessfully.

The @afail attribute is not available on MUCKs.

Also, note that the @oxxx attributes (@osucc, @odrop, and @ofail) automatically prepend the

name of the triggering player to their messages.

To illustrate how these exit attributes are used, define some exit attributes for your

example. You can use the examine command to find the object numbers of the exits in the

room. You can start on the shallow end of the pool.

> examine here
Swimming Pool—Shallow Side (#1200RF)

Type: ROOM Flags: FLOATING

You are floating in the shallow side of the pool. The pool gets deeper to the east.

You can see the blue and white tiles on the bottom of the pool clearly.

Owner: Speedy Key: *UNLOCKED*

Contents:

Speedy (#1111Pc)

Exits.

north;n;south;s;up;u;down;d(#1230ED)

west;w; out (#1221E)

east;e;Sswim(#1203E)

Note the exits displayed at the bottom of the preceding code. There are three exits

mentioned. The east and west exits allow the player to move into and out of the pool,

respectively. You created those exits in your earlier examples. The north/south/up/down exit

is a NULL exit that displays a You cannot go in that direction message to the player. The

D flag indicates that it is dark.

You then can write some exit attributes on the east and west exits:

@succ east = You swim to the deep end of the pool.

@osucc east swims to the deep end of the pool.

@odrop east swims over to this side of the pool.
@fail east = You try to swim to the deep end of the pool, but cannot.

@ofail east = tries unsuccessfully to swim to the deep end of the pool.

@succ west = You climb out of the pool, dripping wet.

@osucc west = climbs out of the pool.

@odrop west = climbs out of the pool.

@fail west = You try to climb out of the pool, but find you cannot.

@ofail west = tries to climb out of the pool, but cannot. VE NES NON ONE NE EN WW

390 Part Ill © MUD Programming Guide

DDOQOHHHHHHHHVDHOHSOSHHDVDOPOE

You then can set up the exits in the deep end of the pool. Note how the new @succ message

is now displayed when you move to the deep end.

> east
You swim to the deep end of the pool.

Swimming Pool—Deep Side (#1201R)

You are bobbing up and down in the deep side of the pool. The pool gets shallow to

the west. A diving platform rises above the water, to the east. You can see the blue

and white tiles on the bottom of the pool faintly through the shimmering water below

you.
Obvious exits:

west east down

Now you can set up the exit attributes from this room:

@succ west = You swim to the shallow side of the pool.

@osucc west = swims to the shallow side of the pool.

@odrop west = swims over to this side of the pool.

@fail west = You try to swim to the shallow end, but cannot.

@ofail west = tries to swim to the shallow end, but cannot.

@succ east = You climb out of the pool, dripping wet.

@osucc east = climbs out of the pool.

@odrop east = climbs out of the pool.
@fail east = You try to climb out of the pool, but find you cannot.

@ofail east = tries to climb out of the pool, but cannot.

@succ down = You dive deeper into the pool.

@osucc down = dives deeper into the pool.
@odrop down = suddenly swims into view.

@fail down = You try to dive deeper into the pool, but find you cannot.
@ofail down = tries to dive deeper into the pool, but finds %s cannot. NVA ON NEN NY CCN/ Ne NBN NAS dV

Finally, you can set up the exit attributes for the deep portion of the deep side.

> down
You dive deeper into the pool.

Swimming Pool—Deep Underwater (#1202R)

You are swimming underneath the surface of the deep side of the pool. A diving

platform glints through the sparkling waters above you. You can see the blue and

white tiles on the bottom of the pool clearly.

Obvious exits:

up

Following are the commands to set up the exit from here to the surface.

@succ up = You swim back up to the surface of the pool.

@osucc up swims back up to the surface.

@odrop up returns from the bottom of the pool.
@fail up = You try to return to the surface, but cannot.

@ofail up = tries to return to the surface, but cannot. WON NEMON:

That sets up the pool exits. You can program the diving board exits similarly.

Lists of Exits
You can obtain a list of the exits leading out of a room by using the examine command on

the room:

> examine here

Swimming Pool—Shallow Side (#12Q0Q0RF)

Chapter 15 ® MUCK and MUSH Programming 391
IO SOSWSOGSSS SSS OO SHS 9GG00 999566066098 800

Type: ROOM Flags: FLOATING
You are floating in the shallow side of the pool. The pool gets deeper to the east.

You can see the blue and white tiles on the bottom of the pool clearly.

Owner: Speedy Key: *UNLOCKED*

Contents:

Speedy (#1111Pc)

EXauts:

north;n;south;s;up;u;down;d(#1230ED)

west ;w; out (#1221E)

east;e;swim(#1203E)

You can get a list of the exits leading into a room by using the @entrances command, as

in the following:

> @entrances here
Swimming Pool—Deep Side(#1201R) (west;w;swim(#1203E))

Swimming Pool—Shallow Side(#1200R) (north;n;south;s;down;d;up;u(#123@ED))

Poolside West(#1220R) (east;e(#1221E))

Removing Exits
You can break an exit by unlinking it from a destination room, as in the following:

> @unlink exit

The unlink command unlinks the exit from its destination room. You then could relink

it to a different destination room; however, you should do this soon after unlinking it

because unlinked exits can be stolen by other players and relinked to rooms of their

choosing. Exits become owned by the player that links them.

To actually delete the link, use the @destroy command on MUSHes or the @recycle

command on MUCKs.

Creating Objects
Next, you will learn how to create objects ina MUD. You can create any type of object you

want, and you can describe it however you wish.

To create an object, you use the @create command, as in the following:

> @create object-name = cost

The cost you give is how much the object is worth if it is destroyed or recycled. When you

create an object, the MUD will make sure you can pay the cost, and then display a message

that tells you that the object has been created with a certain object number. If you omit

the cost, the default cost is 10.

Once the object has been created, you can refer to enough of its name to differentiate it

from other objects. The MUD will perform pattern matching to determine which object

is being referred to.

392 Part II|_ ¢ MUD Programming Guide

DDHOAOOHOHHOHDOHVOGOHHD HHH ID BQH OG GPIB VSI OOBVIG"

ay If you ever want to rename the object you have created, you can use the name command,

TIP’
as in the following:

> @name old-name = new-name

For your swimming pool example, you can create a rubber duck to float around in the

pool.

> @create rubber duck
rubber duck created with object number #3000.

> @desc rubber duck = This is a large, plastic, inflated rubber duck, about two feet

across. It has a large yellow bill, and amusing red polka dots painted on it.

> drop duck
Dropped.

You then can set the home of the object to the deep end of the pool so that it will go back

there if it is ever sent home:

> @link rubber duck = #1201

Home set.

Locks on Exits
Now you are going to program the MUD so that a player cannot take the rubber duck

underwater—the assumption being that it is inflated, and won’t go underwater. You can

program the exit between the Deep Side room and the Deep Underwater room—the down

exit—to prevent the rubber duck from passing through. Remember that the rubber duck

is object #3000

> @lock down=! #3000

which states that an object can go down if it is not object #3000.

Once this lock is set, the efail and @ofail attributes will be displayed if a player tries to take

the rubber duck down into the deep portion of the deep end of the pool:

> look

Swimming Pool—Deep Side (#1201R)

You are bobbing up and down in the deep side of the pool. The pool gets shallow to

the west. A diving platform rises above the water, to the east. You can see the blue

and white tiles on the bottom of the pool faintly through the shimmering water below

you.

Contents:

rubber duck (#3000)

Obvious exits:

west east down

> take duck
Taken.

> down

You try to dive deeper into the pool, but find you cannot.

Chapter 15 ¢ MUCK and MUSH Programming 393
PBOQOGOOQISOSHSHGHOGHIHHHHSHOHGHOGHHHHHOOHGHOOOOSOE

Container Objects
You can create container objects on MUSHes. To create an inflated floating raft that

players can hop onto, you can program the raft to be a container. Containers can hold

other objects inside them. You can turn objects into containers by setting them ENTER_Ok:

> @create floating raft

floating raft created with object number #7500.

> @desc raft = You see an inflated, floating raft.

Set.
> @set raft = ENTER_OK
Flag set.

The raft is now a container.

Container Attributes
Containers have special attributes that are displayed to players that enter or leave the

object, as well as a special description that is displayed to players inside the container.

The @desc attribute is displayed to players who look at the container from the outside. The

@idesc attribute is shown to players who look at the container from the inside, as in the

following:

> @idesc raft = You are on top of an inflated, floating raft in the pool.

The @enter attribute is displayed to a player that is entering a container. The @oenter

attribute is displayed to players that are already inside the container when an object enters

it, and the @oxenter attribute is displayed to players outside the container when an object

enters the container. The @leave, @oleave, and @oxleave attributes correspond to objects

leaving a container in the same manner.

> @enter raft = You jump onto the floating raft!

weaken raft = jumps onto the floating raft with you.

arate raft = jumps onto the floating raft.

valeave raft = You jump off of the floating raft.

arora give raft = jumps off of the floating raft.

Saaeie a raft = jumps off the floating raft.

Set.

Now you can test it out. To enter and leave objects, you use the enter and leave commands,

respectively:

> enter raft
You jump onto the floating raft!

394 Part Ill # MUD Programming Guide

1DBHOOOHHGHGHIH OVS GHSHH FH VHVSSHIVSIS OG

floating raft (#7500e)
You are on top of an inflated, floating raft in the pool.

> leave
Swimming Pool—Deep Side (#1201R)

You are bobbing up and down in the deep side of the pool. The pool gets shallow to

the west. A diving platform rises above the water, to the east. You can see the blue

and white tiles on the bottom of the pool faintly through the shimmering water below

you.
Contents:

floating raft (#7500e)

rubber duck (#3000)

Obvious exits:

west east down

Drop-To Rooms
You also can use the @link command to set up a drop-to room. If you are in a drop-to room

and you drop an object, the object actually falls into some other room. Following is the

syntax to set up a drop-to room:

> @link drop-to-room = #other-room

In your diving board example, you could set up the various diving boards to be drop-to

rooms. Anything that is dropped in them would fall down to the Poolside East room

instead. (Recall that Poolside East was room #1207.)

Go to the Kiddie Diving Board, which is room #1210 in your example:

> @tel me = #1210

Kiddie Diving Board (#1210R)

You are on the kiddie diving platform. The end of the platform is only a few feet

above the surface of the deep end of the pool. You can see higher diving platforms

above you. A ladder leads up to higher platforms, and down to the poolside.

Obvious exits:

up down dive

> @link here = #1207

Dropto set.
> up

Middle Diving Board (#1213R)

You are on the middle diving platform, which hovers about twelve feet above the

surface of the deep end of the pool. Below you is the kiddie diving platform, and

above you is the ominous high diving platform. A ladder leads up to the high plat-
form, and down to the kiddie platform.

Obvious exits:

down up dive

> @link here = #1207

Dropto set.
> up

High Diving Board (#1216R)

You are standing cautiously on the highest diving platform! The pool is about forty

feet below you, and looks awfully far away! Other diving platforms are below you,
reachable by a ladder leading down.

Obvious exits:

Chapter 15 ® MUCK and MUSH Programming 395
®PSOSGILISOVDOSOHGHOSOOIVOSHGSHGHOOSIVHHHOHHOIOOGE

down dive

> @link here = #1207

Dropto set.

Now, if you you’re carrying the rubber duck, and you dropped it from the High Diving

Board, it would fall to the Poolside East room:

> drop duck

Dropped.

> down

Middle Diving Board (#1213R)
You are on the middle diving platform, which hovers about twelve feet above the

surface of the deep end of the pool. Below you is the kiddie diving platform, and

above you is the ominous high diving platform. A ladder leads up to the high plat-

form, and down to the kiddie platform.

Obvious exits:

down up dive

> down

Kiddie Diving Board (#1210R)

You are on the kiddie diving platform. The end of the platform is only a few feet

above the surface of the deep end of the pool. You can see higher diving platforms
above you. A ladder leads up to higher platforms, and down to the poolside.

Obvious exits:
up down dive

> down
Poolside East (#1207R)

You are standing on the east side of the pool, near the deep end. The pool is to your

west. A diving platform rises above you here, reachable by a ladder.

Contents:
rubber duck (#3000)

Obvious exits:

up west

Finally, if you set a drop-to room to also be sticky, then the objects that are dropped in

it will not fall to the other room until everyone has left the drop-to room. This creates a

delayed drop-to effect.

Percent Substitutions
Now turn to things that are specific to MUSHes and are not found in MUCKs.

In MUSHes, there is a special storage area that holds various values whenever an action

occurs. You can access these values using percent substitutions. Percent substitutions are

simply variables that start with a percent sign. The pronoun substitutions mentioned at

the beginning of this chapter actually are types of percent substitutions.

One of the percent substitutions is sv. When an action occurs, the *N variable holds the

name of the object that caused the action to occur. Along with that, the object number

of the object causing the action is held in the %# variable. If the action affects another

object, the object number of the affected object can be found in the %! variable. The

location where the action is occurring is held in the %1 variable. Table 15.5 has a list for

easy reference.

396
1ODDWOOGHHHGHYHLVOSHOHHHGHHVOGHOHHGPID OVID BDSOSISES

Part Ill © MUD Programming Guide

Table 15.5. Special percent substitutions.

Substitution Meaning

Object number of object causing an action

Object number of object being acted upon

Object number of location where action is occurring

For example, if Speedy is object #1111, and he picks up a brick whose object number is #4444,

then «nN would hold speedy, %# would be #1111, and %! would hold #4444. If Speedy picked

up the brick while in room #7777, then %1 would be #7777.

You then could use these percent substitutions in your own MUSH programming code.

Formatting Codes
There are a few percent substitutions that cause special formatting to occur. You can use

these special codes in your descriptions and other messages when you need to format

them in a special way. Table 15.6 shows a list of these codes.

Table 15.6. Special Text Formatting Codes

Substitution Format

Carriage return and new line

Tab

Blank space

Percent sign (%)

You can use these formatting codes in your code. The tab character (%t), for example, can

be useful when formatting tables or lists of information.

Registers and Triggers
In addition to the percent substitutions discussed previously, there are 26 special variables

that you can use to hold information. These variables are named using a %v followed by

a letter of the alphabet: %va, %vb, %vc...%vz. These variables are known as registers.

You can set these registers using @va, @vb, @vc...@vz, along with the object name. Following

is the syntax:

> @register object = actions

Using your rubber duck object created earlier, you can type

> @va duck = @Gemit QUACK!

Chapter 15 © MUCK and MUSH Programming 397
»@ OOD VOGGHGGHHLOVVDOHHOGHGHIOHVVHOHOHHHGVOVHOHOOGHGOOHHOGE

This sets the va register on the duck to the @emit QUACK! action.

To trigger a register, use the trigger command, as in the following:

> @trigger object/attribute

So, to trigger the va register on the duck, type the following syntax:

> @trigger rubber duck/va
QUACK!

You then could program the duck to quack whenever someone picks it up or puts it down,

as in the following:

> @asucc duck = @trigger me/va
Set.

> @adrop duck = @trigger me/va

Set.
> take duck
Taken.

QUACK!
> drop duck
Dropped.

QUACK!

You can program registers to trigger other registers, too.

You also can abbreviate the e¢trigger command as @tr.

Listening
You can program an object to look for certain words or phrases in the messages that it

receives, and then perform special actions when those words or phrases appear. In a way,

it is similar to the Secret Word on Groucho Marx’s old You Bet Your Life television show:

a stuffed duck with a hundred-dollar bill would drop down whenever one of the

contestants said the “Secret Word.”

To listen for a word, use the @listen command.

> @listen object = string

The string is the word or phrase that you are trying to detect. You can use wildcard

characters, such as the asterisk (*), to match other parts of a message.

If the string is detected in a message, the @ahear command is executed:

> @ahear object = actions

You then can program the object to perform special actions when a word is detected.

In the rubber duck example, you could program the rubber duck to say an amusing

message whenever someone says the word duck, as in the following:

> @listen duck = *duck*

Set.

398 Part II|_ ¢ MUD Programming Guide

DODQOOHOEOHHHHHIVVWOGOH9GHIHID WOO OS BHHIGO®

> @ahear duck = "Did someone say ‘duck'? QUACK! ©

Set.
> "Have you ever had Peking duck?

Speedy says, "Have you ever had Peking duck?"

rubber duck says, "Did someone say ‘duck'? QUACK!"

In addition to the @ahear attribute, you also can use the @amhear and @aahear attributes. The

@ahear attribute is used to detect strings in messages that the listening object did not

generate itself, the @amhear attribute looks in messages that it generated, and the @aahear

attribute responds to all messages.

Numbered Variables
When a message is matched by the @listen command, portions of the message are stored

in special numbered variables, known as positional parameters. You denote these variables

using %0, %1, %2, 3, and so on, up to *9. These variables are known collectively as the stack.

These numbered variables are set in two ways. One way is through pattern-matching in

the @listen command. The other way is by directly setting them using the @trigger

command.

Examine the @listen method first. Each numbered variable is set to a wildcard portion of

the message that the @listen command detects. So, if you use wildcard characters in your

@listen string, you can access the wildcard portion of the string using these numbered

variables.

Each wildcard asterisk matches one word in the triggering message. However, the last

asterisk in a string of asterisks matches the remaining wildcard text of the message up to

the next trigger word.

You could use these numbered variables to program the rubber duck to detect when

someone is talking about it:

> @listen duck = * says*rubber duck *

Set.

> @ahear duck = "Are you talking about me, %@?

Set.

In the preceding example, the first asterisk in the @listen command would match

whatever comes before the word says, and this text would be stored in x0. The second

asterisk matches whatever comes between says and rubber duck, including punctuation.

This text is stored in %1. The text after rubber duck is matched by the third asterisk and

stored in %2.

You then use the «0 variable to retrieve the name of the object speaking the text. It is used

in the @ahear attribute. You have programmed a rather paranoid duck.

> "Look at the rubber duck.
Speedy says "Look at the rubber duck."

rubber duck says "Are you talking about me, Speedy?"
Floyd says "This rubber duck is paranoid."

rubber duck says "Are you talking about me, Floyd?"

Chapter 15 ¢ MUCK and MUSH Programming 399
POSHGDSGOGDSOOHHH OHS OOOH HHHOH9HHHHHOOO8HOD &

The second way to set the positional parameters is to explicitly set them using the etrigger

command:

> @trigger object/attribute = item1, item2, item3 ... itemN

So, if you have programmed the @va attribute to be

> @va duck = "Are you %1 or %2, %0?

Set.

and then you triggered it as follows:

> @trigger duck/va = Speedy, sleepy, wide-awake

you would see

rubber duck says "Are you sleepy or wide-awake, Speedy?"

Or, you could enter

> @trigger duck/va = Floyd, a sweet little angel, a pesky little devil

rubber duck says "Are you a sweet little angel or a pesky little devil, Floyd?"

One small caveat—because commas are used to separate items in the triggering command

from one another, you have to put braces around your text if you actually want a comma

in your string. Otherwise, your comma will be used as a separator.

The following is code without braces:

> @trigger duck/va = Speedy, tall, dark and handsome, red, white and blue

rubber duck says "Are you tall or dark and handsome, Speedy?"

The following is code with braces:

> @trigger duck/va = Speedy, { tall, dark and handsome }, { red, white and blue }

rubber duck says "Are you tall, dark and handsome or red, white and blue, Speedy?"

Just remember that you sometimes may need to enclose your strings in braces to make

things work right. This especially is true when programming more complex objects and

lengthy code.

User-Defined Commands
Sometimes you want to be able to type a comman4d that is not defined. On MUSHes, you

can create your own commands by defining them on an object. Then, when someone

enters that command in the room where the object resides, the command will be

executed. The following is syntax for defining your own command on an object:

> @attribute object = $command:actions

You could create a simple quack command on the rubber duck by typing

> @va duck = $quack:@emit QUACK!

Set.
> quack

QUACK!

400 Part IIl_ ¢ MUD Programming Guide
OOO WDOGOSHHGHSHHOOH0HHHOHHIWSOSI HHO GY VOVOSHGOOVVOVOOE

When you create your own commands, be sure to name them something different from

common commands, such as page Or whisper because the common commands take

precedence over user-defined commands.

User-Defined Attributes
You also can define your own attributes on an object. These attributes are useful as named

variables in your MUSH code. You can use

> géattribute object = anything

or

> @set object = attribute:anything

User-defined attributes frequently are used to store temporary values. For example, you

could define an attribute on the duck to store the name of the player who last quacked

the duck:

> @va duck = $quack:@emit QUACK! ;&prevquack me = %n

Set.
> @vb duck = $lastquack:@emit [get(me/prevquack)] quacked me earlier!
Set.

> quack
QUACK!
> lastquack

Speedy quacked me earlier!

The va register holds the code for the quack command. It has two parts. The first part prints

out the QUACK! message, and the second part stores the name of the player who quacked
the duck in the prevquack attribute. This prevquack attribute is a user-defined attribute.

The vb register then retrieves the prevquack attribute and uses it in its own message. The
[get (me/prevquack)] portion is a function, which is discussed shortly. It simply accesses
(gets) the prevquack attribute on the duck (me).

Functions
MUSHes have many built-in functions. You can use these functions in your own
programming code. The following is the syntax for a function call:

[function(parameters...)]

The function itself is enclosed in square brackets, and the parameters to the function are
enclosed in parentheses and separated by spaces.

Functions can be nested in one another. Nested functions only need one outermost set
of square brackets.

Table 15.7 lists some important functions that are used frequently in MUSH code.

Chapter 15 ¢ MUCK and MUSH Programming 401

DOD OSSHDHGHOVEYDSGH9HHHOODHHHHSHOHOHHS HGOHGHHO OOOH GOGE

Table 15.7. Common MUSH functions.

Function Example Meaning

get (object/attribute) [get (me/va)] Obtains the value of an attribute on the

given object.

eq(item1, item2) [eq(me, #444)] Tests to see whether items are equal.

loc(object) [loc(me)] Obtains the object number of an object’s

location.

name (object) [name(me)] Obtains the name of the given object.

rand (number) [rand(5)] Generates a random number from @ to

(number-1).

s(string) [s(%P left.)] Performs pronoun substitution on the

string.

v(v-register) [v(va)] Obtains the value of the given v-register.

v(user-attribute) [v(prevquack)] Obtains the value of the given v-register.

The following is an example of how you can use these functions:

> @emit [name(me)] is in the [name(loc(me))] room.

Speedy is in the Swimming Pool—Deep Side room.

The @switch Command
You use the @switch command to program if-then-else and case-statement style expres-

sions in MUSH code. This enables you to test for certain conditions, and then perform

actions based on those conditions.

The following is the format of the switch command:

> @switch test-expression = match1, actions? , match2, actions2, ..., matchN,

actionsN, default-actions

Using this syntax, the test-expression is evaluated. It is matched against matcht. If these

are equal, then the actions? actions are executed. Otherwise, it tries to match up with

match2. If this matches, then actions2 are executed, and so on. It does this for all the

matches in the statement. At the end, if nothing matches, the default-actions, if any, are

executed.

So, you could program the duck to respond differently to male and female players. You

can use the match() function to see if the sex attribute of the player petting the duck is

female, as in the following:

> @vf duck = $pet:@switch match(get (%#/sex),female)=1, {@emit The duck wags its

little tail and bats its eyes romantically.}, ®, {@emit The duck smiles and looks

very friendly.}

Set.

402 Part Ill © MUD Programming Guide

1DDDOOOHHHHGHGH9OOSHH9GSGS9OOGSGG9D BOBO OG SG BSS BOG OS 9S9S SOB 9899S%

If someone who is female pets the duck, the duck responds with

The duck wags its little tail and bats its eyes romantically.

and if a male player pets the duck, then you see the following:

The duck smiles and looks very friendly.

You also could use the rand/) function to generate a random number, and use that to

determine which message to display, as in the following:

> @vf duck = $pet:@switch rand(4)=0,{@emit Hey! Watch where yer pettin!},1,{@emit A

bit lower, please.},2,{@emit You have nice hands.},3,{@emit Brrr! Your hands are

cold!}
Set.

> pet
A bit lower, please.

> pet

Hey! Watch where yer pettin!

> pet
You have nice hands.

> pet
A bit lower, please.

> pet
A bit lower, please.

> pet
Brrr! Your hands are cold!

Lists
There are different methods to generate lists of objects on various MUDs, and the

functions differ from MUD to MUD. For purposes of discussion here, assume that the

1con() function is available on your system. If itisn’t, you may have to search through your
MUD’s help files to find an equivalent function.

The lcon(object) function returns a space-separated list of the objects in a room or in a
container. The list is in object number format.

If you are in the deep side of the pool

> say lcon(here)

You say "#1111 #7500 #3000 "

where Speedy is object #1111, the floating raft is object #7500 and the rubber duck is object
#3000.

Once you have a list of objects, if you want to perform the same command on each item
in the list, you can use the edolist command.

> @dolist list = actions

The list in the preceding command is a space-separated list of items. The command works
in conjunction with a special indicator in the actions portion of the command—the ##
indicator. The actions are executed once for each item in the list, and the ## indicator in
the actions is replaced by each item in the list.

Chapter 15 ¢ MUCK and MUSH Programming 403
POOGQOVLlOVSHHSHS HOO YIOHSHHHOHOOD9HHG9SHOOH9SGHHGHHH0O9 SOO

So, if you type

> @dolist 1 2 3 4= say Number ##
You say “Number 1"
You say "Number 2"
You say "Number 3"
You say "Number 4"

Or, you could use list commands in the list portion of the command, as in the following:

> @dolist lcon(here) = say This is the [name(##)].

You say “This is the Speedy."
You say "This is the floating raft."

You say “This is the rubber duck."

You could use list construction commands and the @dolist command to send messages

to objects inside of containers. If there was a box with Alfred, Robin, and Selina in it, you

could page them using:

> @dolist lcon(box) = page ## =Hi there!

You paged Alfred with 'Hi there!'.

You paged Robin with ‘Hi there!'.

You paged Selina with 'Hi there!'.

Needless to say, the @dolist command can be very useful in your MUSH programming.

The Command Queue
Whenever an action occurs, it actually goes into a queue. This queue is then processed,

action by action. Most of the time, these actions occur immediately; however, you can set

up delayed actions, also.

To see your queue, use the eps command. It lists all the commands that are waiting to be

executed. If you are programming something using programming language constructs

such as @wait, you can check the queue to see that your commands have been entered there

and are waiting to be executed.

The @wait and @halt Commands
The ewait command creates a delay. Following is the syntax:

> @wait seconds = actions

The MUD waits the given number of seconds before running the specified actions.

So, if you type

> @wait 10 = "Hey!

then 10 seconds would pass before your Hey! message would appear.

404 Part Ill © MUD Programming Guide
G999O9OGGGGS8 99S OG SS GS9 SO998 99S 9 9989S S9 0G 99 9 S8S999S99%

You can use the ewait command to program the floating raft to float around the pool.

Every minute, it will wander from the deep side to the shallow side. After another minute,

it will wander back. You can use the @ewait command to set up registers to accomplish this.

You then can program two commands, startfloat and stopfloat, to start the raft on its

journey. You can lock the raft so that it cannot be taken, and lock the exits so the raft

doesn’t leave the pool.

Create the raft on the deep side of the pool.

> @va raft = @wait 60 = { Gemit The raft floats along.; west; @tr me/vb }
Set.

> @vb raft = @wait 60 = { Gemit The raft floats along.; east; @tr me/va }
Set.

> @ve raft = $startfloat:@tr me/va
Set.

> @vd raft = $stopfloat:@halt me
Set.
> @lock raft = me & ! me

Locked.

Next, go to the shallow side of the pool and lock the west exit so that the raft cannot go

through it. Recall that the raft was object #7500:

> @tel me = #1200

Swimming Pool—Shallow Side (#12QQ@R)

You are floating in the shallow side of the pool. The pool gets deeper to the east.

You can see the blue and white tiles on the bottom of the pool clearly.
Obvious exits:

west east

> lock west = ! #7500
Locked.

> east

Swimming Pool—Deep Side (#1201R)

You are bobbing up and down in the deep side of the pool. The pool gets shallow to
the west. A diving platform rises above the water, to the east. You can see the blue
and white tiles on the bottom of the pool faintly through the shimmering water below
you.

Contents:

rubber duck (#3000)

floating raft (#7500)

Obvious exits:

west east down

> lock east = ! #7500

Then start the raft on its journey by typing the following:

> startfloat

After a minute, you will see

The raft floats along.

floating raft swims to the shallow side of the pool.

And, a minute later, you see the following:

floating raft swims over to this side of the pool.

Chapter 15 * MUCK and MUSH Programming 405

@QDOSOOSHOOQPI V9 SHHHHHOHYVWISHOHHHHOOOHDHOHHHHHHOOSSOGE a

If you jump onto the raft by entering it (remember that it is a container object), you will

be moved from one side of the pool to the other along with the raft as it moves.

The raft will continue floating from one side of the pool to the other until you run the

stopfloat command. The stopfloat command executes a @halt on the object. The syntax

of the @nalt command is:

> @halt object

This command clears out the queue for that object. Any actions in the queue pertaining

to that object are removed.

In addition, the command

> @halt

clears out your personal queue.

Semaphores
A semaphore is a slightly more advanced MUSH feature that controls when actions can

occur. Like real-life railroad semaphores that signal when it is safe for a train to take a

particular rail line, MUSH semaphores indicate when it is safe for actions to execute.

You might use semaphores to make sure that a series of actions are not interrupted by

another series of actions. For example, if you have a machine that creates a magic wand,

you may want to make sure someone else does not activate the machine and try to create

a wand while the first wand is being handled. You can use semaphores for this.

Semaphores have a count, which is the number of actions that are currently blocked and

are waiting to be unblocked. When the count is @, actions occur immediately. A number

higher than @ indicates how many actions are currently blocked. A number lower than

zero indicates that that many actions will execute immediately.

When you use the ewait command with an object, the actions are placed on the object’s

queue and postponed until a notification occurs. Following is the syntax of the e@wait

command on an object:

> @wait object = actions

Or, if you want to specify a maximum waiting time, use the following:

> @wait object/seconds = actions

in which case the actions will be performed if the waiting time, given in seconds, expires.

This is useful when you want to make sure the actions eventually will be executed.

You can indicate that your queued actions should be executed by using the @notify

command

> @notify object

406 Part IIl_ # MUD Programming Guide
1BBOHOSOHGHHHHHGHVOOHHHHHSHDOOPHHOGHHBWOPVOOSOSHHOE

which forces the first action in the enqueued action list to be performed. You also can

specify a certain number of actions to be executed using the following:

> @notify object = number-of-actions

The @drain command resets the semaphore count on an object to 2.

The @startup command specifies actions that will be executed when the MUSH starts up.

As an example, you can create a guppy generator in the shallow side of the pool.

> @create guppy generator
guppy generator created as object #888.

> @desc guppy = This strange contraption creates guppies. Type ‘guppy' to make some

guppies!

Set.

> @startup guppy = @drain me; @notify me
Set.

> @notify generator

Set.

Now the guppy generator has a count of -1. This means that any actions on it will execute

immediately. It also is set up to notify itself when the MUSH starts up.

You now can program the guppy command.

> @va guppy = $guppy:@wait me = {@create a guppy; @desc a guppy=You see a small

fish.;@set a guppy=DESTROY_OK;@tel a guppy=[loc(%#)];@emit You made a guppy! ;@notify
me}

The guppy command creates a guppy, sets its description and some flags, and then teleports

the guppy into the same room as the enactor of the command.

> drop guppy
Dropped.

> guppy
You made a guppy!

If you look at the room contents now, you will see that a new guppy object has been
created. If you continue to type guppy, more and more guppies will appear.

If you really wanted the guppies to be proliferous, you could program the guppies to
respond to the guppy command also, and create their own guppies. If you do this, however,
please remember to @destroy all your guppies when you are finished with your example.
There’s no sense in having all those guppies taking up space in the MUD database. But it
is kind of amusing to experiment!

Puppets
In a MUSH, there are special objects called puppets. These objects are similar to puppets
in real life because their owner can control them. Puppets can see and hear things ina
room, and they can report what they see and hear back to their owners.

Chapter 15 ¢ MUCK and MUSH Programming 407
2BODODOO DLO GV SH 9SSSO GH S009 OGS90S9000099S0S00000008

To change an object into a puppet, type the following:

> @set object = puppet

The puppet object will announce that it has grown ears and can now hear.

To force an object to perform an action, use the eforce command, as in the following:

> @force object = actions

You can use the @¢force command along with puppets to control what they do.

Assume that you are in the Poolside East room, under the diving board.

> @create Lifeguard

Lifeguard created as object #986

> @set Lifeguard=puppet
Lifeguard grows ears and can now hear.

Lifeguard>

Flag set.

> inv

Lifeguard grows ears and can now hear.

You are carrying:

Lifeguard (#986p)

You have 595 pennies.

> drop Lifeguard

Lifeguard> Speedy dropped you.

Lifeguard has left.

Lifeguard has arrived.

Lifeguard>

Lifeguard>
is to your

Lifeguard>

Lifeguard>

Lifeguard>

Lifeguard>

Dropped.
> @force Lifeguard

Lifeguard>

Poolside East(#1207R)
You are standing on the east side of the pool, near the deep end. The pool

west. A diving platform rises above you here, reachable by a ladder.

Contents:

Speedy (#1111Pc)
Obvious exits:

up west

= "Hey, you kids, quit horsing around in the pool!

You say “Hey, you kids, quit horsing around in the pool!"

Lifeguard says "Hey, you kids, quit horsing around in the pool!"

> @force Lifeguard = west

Lifeguard has left.

Lifeguard> Swimming Pool — Deep Side(#1201R)

Lifeguard> You are bobbing up and down in the deep side of the pool. The pool gets

shallow to the west. A diving platform rises above the water, to the east. You can

see the blue and white tiles on the bottom of the pool faintly through the shimmering

water below you.

Lifeguard>

Lifeguard>

Lifeguard>

Lifeguard>

Lifeguard>

Contents:

floating raft(#7500e)

rubber duck(#3000)

Obvious exits:

east down west

> @force #986=enter raft

Lifeguard>

Lifeguard>

Lifeguard>

You jump onto the floating raft!

floating raft(#7500e)

You are on top of an inflated, floating raft in the pool.

> @force #986="I'm on the raft!

Lifeguard> You say "I'm on the raft!"

Lifeguard says "I'm on the raft!"

408 Part Ill ¢ MUD Programming Guide

1BODHOHOOHHHHHIOHHOOOHOH OHHH HD VDGGPDHGHSDDI 9VOVOP YOSSI BOSOIVOE

@Command Reference
Following is a list of the @commands that are available on MUCKs and MUSHes. Your

particular MUD may not implement all of these, however. Some commands are only

available on MUSHes, and are denoted as such.

@@

@aahear object=actions

@aclone object=actions

@aconnect object=actions

@adescribe object=actions

@adfail object=actions

@adisconnect object=actions

@adrop object=actions

@aefail room\object;\player=actions

@aenter room\object|player=actions

@afail object=actions

@agfail object=actions

@ahear object=actions

Does nothing. Useful for comments in

your code.

Sets the actions triggered when the

@listen string is matched by a pose or

utterance from the object itself or from

a player. (MUSH only)

Sets the actions triggered by the newly

cloned copy when the object is cloned.

(MUSH only)

Sets the actions triggered when some-

one connects onto the MUD. (MUSH

only)

Sets the actions triggered when the

object is looked at. (MUSH only)

Sets the actions triggered when some-

one fails to drop the object due toa

drop lock. (MUSH only)

Sets the actions triggered when some-

one disconnects from the MUD. (MUSH

only)

Sets the actions triggered when the

object is dropped. (MUSH only)

Sets the actions triggered when some-

one fails to enter the room, object, or

player. (MUSH only)

Sets the actions triggered when the room,

object, Or player is entered. (MUSH

only)

Sets the actions triggered when an

attempt to use the object fails. (MUSH

only)

Sets the actions triggered when some-

one fails to give away the object due to

a give lock. (MUSH only)

Sets the actions triggered when the

object’s @listen string is matched.

(MUSH only)

Chapter 15 ¢ MUCK and MUSH Programming 409
DDO®ODDOHOSSHH OLS HHGHOHHHHOHHHGHOHSHOOVlSSHGHGHHHHOOHOOOE

@akill object=actions Sets the actions triggered when the

object is killed, after it has returned to

its home. (MUSH only)

@aleave room|object=actions Sets the actions triggered when a player

or other object leaves the specified room

or object. (MUSH only)

@alfail room!object=actions Sets the actions triggered when some-

one fails an attempt to leave the room or

object. (MUSH only)

@alias player=alias Sets the alias by which to reference the

player. (MUSH only)

@amhear object=actions Sets the actions triggered when the

object’s @listen string is matched by a

message from the object itself. (MUSH

only)

@amove object=message Sets the message emitted if the object

moves by any means. (MUSH only)

@apay object=actions Sets the actions triggered when some-

one or something gives credits to the

object. (MUSH only)

@arfail object=actions Sets the actions triggered when the

object fails to receive an object that was

given to it due to a give lock. (MUSH

only)

@asuccess object=actions Sets the actions triggered when the
object is successfully used. (MUSH only)

@atfail object=actions Sets the actions triggered by the object
when someone tries to teleport to the

object, but fails. (MUSH only)

@atport object=actions Sets the actions triggered when the
object teleports somewhere. The actions

occur after the object has teleported.

(MUSH only)

@aufail object=actions Sets the actions triggered when some-
one fails to use the object due to a use

lock. (MUSH only)

@ause object=actions Sets the actions triggered when some-

one uses the object via the use

command. (MUSH only)

Part Ill «

OBQQOOHHHHHHHH OOH OHOHGHHHDDVWOPDGHHGHBDID BOVGGGOIBBVOGOVD

MUD Programming Guide

@away player=message

@charges object=#charges

@chown object=player

@clone object

@cost object=#credits

@create obj -name[=#credits]

@decompile

@describe object=text

@destroy object

@dfail object=message

@dig room-name[=exits[,return-exits]]

@doing message

Sets a message on the player that is

displayed to someone who tries to page

the player when the player is not

connected to the MUD. (MUSH only)

Limits the number of times an object

can be used. (MUSH only)

Changes the ownership of the object to

the specified player. You must own the

object or the object must be CHOWN_OK.

Creates a duplicate of the object. (MUSH

only)

Sets the number of credits that must be

given to the object to trigger @pay, Gopay,

and @apay. (MUSH only)

Creates a new object whose name is the

specified obj -name. The command costs

#credits or 10 credits, whichever is

greater. The object’s “actual” value will

become (#credits / 5) - 1.

Outputs a series of commands that can

be fed back into the MUD to redefine

and reset all of an object’s registers and

flags. This command can be used to save

an object to disk, edit it, and read it

back in. (MUSH only)

Sets the text seen when the object is

looked at.

Sets the object so as to be destroyable

andsreturns the creator’s investment.

(MUSH only)

Sets the message seen when someone

fails to drop the object due to a drop

lock. (MUSH only)

Creates a room, giving it the specified

room-name. The optional portions allow

alternate names and auto-linked exits

on MUSHes.

Sets the player’s @doing message, which is

displayed in the wno list. (MUSH only)

Chapter 15
JOG GGOVSWIIGOGGOOHGIHGYHHSHOOSYIHDHHHHGHOSOHHHHHOHSHOHHHHGHHOOOHHOOE

@dolist list=actions

@drain object

@drop object=message

@ealias object=alias-list

@edit MUF-program

@edit object/attribute={old-string},

{new-string}

@efail object=message

@emit message

@enter object=message

@entrances room;|object

@fail object=message

@femit object=message

@filter object=patterni

[,; --., patternN]

MUCK and MUSH Programming 411

Performs the actions on each of the

items in the list, one by one, by

substituting the special symbol ## in the

actions by each item in the list. (MUSH

only)

Clears out the semaphore object and

resets it to its initial state. (MUSH only)

Sets the message seen when someone

drops the object. If entered without a

message, it clears any existing message.

Sets a list of aliases that can be used to

enter the object, instead of “enter

object”.

Searches for the given MUF-program and,

if found, puts the user into edit mode.

(MUCK only)

Replaces the first occurrence of the

old-string by the new-string. The

attribute can be any attribute on the

object that holds a string value (such as

@desc, @succ, @adrop, @listen, @ahear, @va,

@vb, and so on). If the strings contain

only alphabetic characters, the curly

braces may be omitted. (MUSH only)

Sets the message shown to a player who

fails to enter the object. (MUSH only)

Emits the message to everything in the

room. (MUSH only)

Sets the message seen when a player

enters the object. (MUSH only)

Lists everything linked to the room or

object. You must control the room or

object.

Sets the message seen when an attempt

to use the object fails.

Forces the object to emit the message.

You must own the object. (MUSH only)

Sets the patterns to be looked for

to suppress text on the object generated

because of the AUDIBLE flag. (MUSH only)

412 Part II] ¢ MUD Programming Guide
DDGSQVLOOOHGHO9G@ 9 OH 9OHGSG 38909 9G99 G99 9 SE9 9 GSSSSS8 90)

@find name

@force player |object=actions

@forwardlist object=database-

reference-list

@fpose object=message

@gfail object=message

@halt [object]

@idescribe object=message

@idle player=message

@infilter object=pattern1

ly abo (ety

@inprefix object=prefix

@kill object=message

@lalias object=alias-list

@last player

@leave object=message

Displays the name and number of every

object you control whose name matches

the specified name. Usually costs 100

credits on MUSHes, but may be higher

on some MUSHes.

Forces the specified player or object to

perform the actions, as though the

player Or object entered the actions

itself.

Sets a list of locations that will

receive messages heard by an object that

has its AUDIBLE flag set. (MUSH only)

Forces the object to pose the message.

You must own the object. (MUSH only)

Sets the message seen by a player when

the object fails to be given away by the

player due to a give lock. (MUSH only)

Stops a process or a runaway machine.

(MUSH only)

Sets the message seen when the object is

entered or looked at from the inside.

(MUSH only)

Sets the message sent to people when

they page you, used to indicate that you

are idle. (MUSH only)

Sets the patterns to be looked for to

suppress text sent to the contents of

object generated due to @listen. (MUSH

only)

Sets a prefix to be prepended to text

sent to the contents of the object by

@listen. (MUSH only)

Sets the message seen by someone who

kills object. (MUSH only)

Sets a list of aliases that can be used to

leave the object, instead of “leave

object”. (MUSH only)

Displays a short history of connection

attempts for the player. You can only

obtain history about yourself.

Sets the message shown to a player upon
leaving the object. (MUSH only)

Chapter 15 ¢ MUCK and MUSH Prograrnming 413
SSG SOSSSSSOSO2SGSH9 GOGO 9 OHO9HGSOHOHOOGHHOHOHO0HHHHHOHO0OO8OO

@lfail object=message Sets the message shown to a player who
fails to leave the object. (MUSH only)

@link object=room For things and players, makes the

specified room Home. For rooms, makes

the specified room the drop-to room. For

exits, makes the specified room the exit’s

target room.

@list MUF-program Lists out the given muF-program. (MUCK

only)

@list option Lists information about the database,

based on the value of the given option.

This option can be attributes, commands,

costs, default_flags, flags, functions,

options, switches. Leaving off the option

will give you a list of possible options.

(MUSH only)

@listen object=string Listens for the given string to trigger

@ahear, @amhear, and/or @aahear. If the

string is matched, the object’s contents

also hear the message. (MUSH only)

@listmotd Displays the current message-of-the-day.

(MUSH only)

@lock object=lock Sets the lock on the object. Only players

or things satisfying the lock will be able

to “succeed” with the object (pick up a
thing, go through an exit, and so on).

(MUSH only)

@move object=message Sets the message shown to the object

itself when it moves by any means.

(MUSH only)

@mvattr object=old,new[,copy] Renames the attribute named old on the

object to the attribute new, and is copied

to copy if copy is specified. (MUSH only)

@name object=new-name Changes the object’s name.

@notify object[=count] Notifies the semaphore object, running

count commands that have been waiting

on the object. If less than count com-

mands are waiting, then the semaphore

will be set so that count later @wait

commands will immediately execute.

(MUSH only)

414 Part Ill # MUD Programming Guide

99OOO0HHHH9999 9H 9999999909 9H9GBIB9VOG9BIBBO9O990E

@odescribe object=message

@odfail object=message

@odrop object=message

@oefail object=message

@oemit object=message

@oenter object=message

@ofail object=message

@ogfail object=message

@okill object=message

Sets the message that is seen by the other

players in the room when a player looks

at the specified object. The message is

prefaced by the name of the triggering

player. (MUSH only)

Sets the message seen by other players in

the room when someone fails to drop

the object due to a drop lock. The

message is prefaced by the name of the

triggering player. (MUSH only)

Sets the message that is seen by the other

players in the room when a player drops

the specified object. The message is

prefaced by the name of the triggering

player. If the object is a room, this sets

the message that is displayed to other

people when someone enters the room.

Sets the message shown to the other

players in the room if a player fails to

enter the specified object. (MUSH only)

Sets the message to be emitted to every-

thing in the room except the object

itself. (MUSH only)

Sets the message that is seen by the other

players in a thing when a player enters

that thing. The message is prefaced by

the name of the triggering player.

(MUSH only)

Sets the message that is seen by the other

players in the room when a player fails

an attempt to use the specified object.

The message is prefaced by the name of

the triggering player.

Sets the message seen by other players in

the room when someone fails to give

the object away due to a give lock. The

message is prefaced by the name of the

triggering player. (MUSH only)

Sets the message seen by other players in

the room when the object is killed. The

message is prefaced by the name of the

object being killed. (MUSH only)

SS SS i eP

Chapter 15 ¢ MUCK and MUSH Programming 415
SOS DO SOD DS OSHS HG OOF 9O9SHHH OHO HGHHHHHSOHOSSGH99O088OO8

@oleave object=message Sets the message that is seen by the other

players in a thing when a player leaves

that thing. The message is prefaced by

the name of the triggering player.

(MUSH only)

@olfail object=message Sets the message that is seen by the other

players in a thing when a player fails to

leave the specified thing. The message is
prefaced by the name of the triggering

player. (MUSH only)

@omove object=message Sets the message seen by all other objects
in the room the object moves to when

the specified object moves by any

means. (MUSH only)

@opay object=message Sets the message that is seen by the other

players in the room when a player or

thing pays the specified object. The

message is prefaced by the name of the

triggering player. (MUSH only)

@open direction[;other-directions] Creates an exit in the specified

[=#room] direction(s). If a room number is speci-

fied, the exit is linked to that room.

Otherwise, the exit remains unlinked.

Anyone can use @link to specify where

an unlinked exit leads.

@orfail object=message Sets the message seen by other players in

the room when someone fails to receive

the object due to a receive lock. The

message is prefaced by the name of the

triggering player. (MUSH only)

@osuccess object=message Sets the message that is seen by the other

players in the room when a player or

thing succeeds in using the specified

object. The message is prefaced by the

name of the triggering player.

@otfail object=message Sets the message seen by other players in

the room when someone fails to

teleport somewhere. The message is

prefaced by the name of the triggering

player. (MUSH only)

416 Part Ill #« MUD Programming Guide
DODOQOOSHSOOGG BOS SG SS999 9OSOS OGIO IIOP PDSSIISSBOOOES

@otport object=message

@oufail object=message

@Gouse object=message

@owned

@oxenter object=message

@oxleave object=message

@oxtport object=message

@parent object[=parent]

@password old-password=new-password

@pay object=message

Sets the message seen by other players in

the room when the object teleports into

their room. The message is prefaced by

the name of the triggering player.

(MUSH only)

Sets the message seen by other players in

the room when someone faiis to use the

object due to a use lock. The message is

prefaced by the name of the triggering

player. (MUSH only)

Sets the message seen by other players in

the room when someone succeeds in

using the object. The message is prefaced

by the name of the triggering player.

(MUSH only)

Lists the objects you own. (MUCK only)

Sets the message seen by other players in

the room being left when someone

enters the object. The message is shown

to those outside the object. The message

is prefaced by the name of the triggering

player. (MUSH only)

Sets the message seen by other players in

the room being entered when someone

leaves the object. The message is shown

to those outside the object. The message

is prefaced by the name of the triggering

player. (MUSH only)

Sets the message seen by other players in

the room when the object teleports out

of their room. The message is prefaced by

the name of the triggering player.

(MUSH only)

Sets the parent of the object to the

given parent, or clears the parent if

parent is omitted. You must control

object and own parent. (MUSH only)

Changes your password.

Sets the message shown to the player

who pays the specified object. (MUSH
only)

Chapter 15

SSOOSOH GOSS SSOSS GS OOD 8 9GSSS 9990999890690 008900080

@pemit player=message

@prefix object=prefix

@ps

@quota

@recycle object

@reject player=message

@rfail object=message

@robot name=password

@runout object=actions

@search [player] [class=restrictions]

@set

MUCK and MUSH Programming

Emits the message to a specified player.

(MUSH only)

Sets a prefix that will be prepended to

all messages sent out by the object due

to the AUDIBLE flag. (MUSH only)

Lists the queued commands that have

not yet been executed. (MUSH only)

Displays your current builders’ quota.

(MUSH only)

Recycles the object, which saves space

in the database. (MUCK only)

Sets the message sent to all players who

fail to page you due to your page lock.

(MUSH only)

Sets the message displayed to the player

who fails to give the object due toa

receiver failing to pass the object’s

receive lock. (MUSH only)

Creates a robot named name, and owned

by you. Costs 1000 credits. (MUSH only)

Sets the actions triggered when the

object’s charges reach 0. (MUSH only)

Searches the MUD database and lists the

objects that meet the player’s search

criteria. If the player argument is

supplied, only objects owned by that

player will be listed. If the class argu-

ment is supplied, only objects of a

certain class will be listed. Costs 100

credits. The command @search flags=RHD

would list all rooms (the R flag) set HAVEN

and DARK (the H and D flags). The com-

mand @search type=rooms would list all

rooms owned by the player. (MUSH

only)

Used to set attributes and flags on

objects. May be used in various ways,

see the following specific @set de-

scriptions.

417

418 Part Ill ® MUD Programming Guide

@set object=flag

@set object=! flag

@set object=attribute: value

@attribute object=value

@sex player=gender

@startup object=actions

@stats [player]

@success object[=message]

@sweep

OO OOOOSHOHGHOVOOOSSSSSSSSOSSHSSGIDOIHSHSISII IIOP SIS III DIIOSM

Sets the specified flag on the object.

Resets the specified flag on the object.

Sets an attribute value on the object.

Short form of @set object

attribute:value. User-defined attributes

cannot be set in this manner.

Sets the gender of the player. The

player’s gender is used for pronoun

substitution. (Options: male, female,

neuter, plural. The default is neuter.)

Pronouns cannot be used in reference to

players unless their gender is set to one

of these choices. Visible to all. (MUSH

only). On MUCKs, the command is éset
me=sex:gender.

Sets the actions to be performed by the

object in the event that the MUD gets

rebooted. By using @startup, you can

retrigger objects that need to be running

continuously. (MUSH only)

Displays statistics about all the objects

in the game, or about the given player if

supplied.

Sets the success message for the specified

object, which is displayed to the player

whenever a player successfully uses the

object.

Lists all the objects and players that are

listening in the room you currently are

in, as well as in the objects you are

carrying. In these listings, player de-

notes a connected player that hears all

occurrences in the room, puppet denotes

a puppet belonging to a connected

player, relaying all occurrences in the

room to the owner, messages denotes an

object that is listening for specific

occurrences in the room, and commands

denotes an object waiting for a specific
command. (MUSH only)

Chapter 15 * MUCK and MUSH Programming 419
PDD OOVSSO SSBSGSSGOGOGHO HOG V9HH9HOHHODOHHHOHHHOOHOOHOHOHHOOOOOOOO!

@switch Evaluates a conditional expression and
performs different actions based on the

results of that evaluation. (MUSH only)

May be used in two ways:

@switch condition={pattern?/}, Corresponds to the if-then-else pro-
{yes-actions}, {no-actions} gramming structure.

@switch condition={pattern1},

{yes-actions1},{pattern2}, {yes- Corresponds to the case or switch
actions2},...,{default-actions} programming structure.

@teleport [thing=]#room Teleports the given thing to the speci-

fied room. If the thing is omitted, the

command teleports you to the specified

room. You must own or control the

thing or its current location. You can

only teleport objects into rooms or

objects you own or that are set JUMP_OK.

If the target room has a drop-to, the
object will go to the drop-to room

instead.

@tfail object=message Sets the message displayed to a player
who fails to teleport to the object.
(MUSH only)

@tport object=message Sets the message displayed to an object

whenever it teleports to another loca-
tion. (MUSH only)

@trigger Passes control and data (on the stack)

among items. If you create attributes

that are triggered by other commands or

actions, you can use this command to

trigger them. Many tricky things can be

done with simple command combina-

tions. (MUSH only)

@ufail object=message Sets the message displayed to someone
who fails to use the object due to a use

lock. (MUSH only)

@use object=message Sets the message displayed to the player

who successfully uses the object. (MUSH
only)

420 Part Ill ¢ MUD Programming Guide

1B OHQOOQVSHHHHHVIWQPOVOHGHSHHGHHHOWHGGSOOIHWIQPHHOGIIHVQOVSOOSHI HOB

@unlink exit OF @unlink here

@unlock object

@va object=actions

@vb object=actions

@vz object=actions

@version

@wait #seconds=actions

@wipe object[/attribute-pattern]

Removes links from exits. The first

version shown removes a link from the

specified exit. The second removes the

drop-to on the room. Be careful, how-

ever; anyone can relink an unlinked

exit, thereby becoming its new owner.

Removes the lock on the object.

Sets the v-register on the object to the

specified actions. Every object has 26

built-in registers, va through vz.

Anything may be stored on a v-register.

(MUSH only)

Displays the MUCK version number.

(MUCK only)

Queues actions. The actions are placed

on the queue and will be executed no

earlier than #seconds from the time they

are queued. The actions may be a list of

commands in curly braces. (MUSH only)

Clears all the attributes on the object, or

the attributes that match the given

attribute -pattern, if it is specified.

(MUSH only)

MUSH Function Reference
The following isa list of functions that are available on MUSHes. Some functions may not
be implemented on your system.

abs (number)

acos (number)

add(a, b)

after(string1, string2)

Returns the absolute value of the number.

Returns the arccosine of the number.

Returns the sum of a and b.

Returns the part of string1 that occurs

after string2. Returns a null string if

string2 does not occur in string1.

Be EH KD, Or Oe AD

Chapter 15

and(boolean?, boolean2,

aposs(object)

asin(number)

atan(number)

capstr(string)

cat(string?, string2, ... stringN)

ceil (number)

center(string, width)

comp(n, m)

con(object)

conn(player)

controls(object?1, object2)

convsecs(seconds)

convtime(string)

cos (number)

delete(string, index, numchars)

MUCK and MUSH Programming

-+.,; booleanN) Returns 1 if each boolean argument

evaluates to true.

Returns the absolute possessive pronoun

(his, hers, its, theirs) that corresponds

to the object, based on the @sex attribute

of the object.

Returns the arcsine of the number.

Returns the arctangent of the number.

Returns the string, with its first letter

capitalized.

Returns the concatenation of string1

through stringn. Each string will be

separated from one another by a space.

Returns the smallest integer that is

greater than or equal to the given
number.

Returns the string, center-justified, in a

field of the given width.

Returns @ if n =m, -1 ifn <m, and 1 ifn>

m. Alphanumeric strings are compared

alphabetically.

Returns the first thing in the contents

list of the object. Similar to the LISP

car() function.

Returns the number of seconds that the

player has been connected to the MUD,

or -1 if the player is not connected.

Returns 1 if object? controls object2,

otherwise returns 0.

Converts the given seconds value into a

date/time string based on seconds

elapsed since January 1, 1970.

Converts the given date/time string to

the number of seconds elapsed since
January 1, 1970.

Returns the cosine of the given number.

Returns the remainder of the given

string after deleting numchars characters

beginning with the character at the

given index. Characters are numbered

starting at 2.

421
OO SS SSSGSOGOG9GOG9HS HH GOYGH9GHGHOHH OOO OHHHHOHOOHSOHHOHOOOOOOO

Part Ill ¢

DDDDVOHGOHHHHHHHVVWOGIHHGH 9G BVOVOSSPDSBIVO

MUD Programming Guide

dist2d(x7, y1, x2, y2)

Obie ala, Wiig il, keg M25 es)

div(a, b)

e()

edit(string, pattern, replacement)

elock(object1[/lock] ,object2)

eq(integer1, integer2)

escape(string)

exit (object)

exp (number)

extract(string, wordnumber, numwords)

fdiv(a, b)

filter([object/]attribute, list[,

delimiter])

first(string)

flags (object)

DOOOHHOSQOQOOG’

Returns the distance between (x17, y7)

and (x2, y2) as if plotted on a 2-

dimensional graph.

Returns the distance between (x1, y1,

z1) and (x2, y2, z2) as if plotted on a 3-

dimensional graph.

Returns a divided by b (this is integer

division with no remainder).

Returns the number e.

Returns the string with all occurrences

of pattern changed to replacement. If

pattern is "$", then replacement will be

appended to string. If pattern is ~, then

replacement will be prepended to string.

Returns 1 if object2 would pass the

named lock on object?.

Returns 1 if integer? equals integer2, ®

otherwise.

Parses the string and puts an escape

character at the start of the string and

in front of special characters.

Returns the first exit in the exit list of

the object.

Returns e raised to the power of the

given number (reverse 1n).

Returns the substring from string

starting at word number wordnumber and

containing numwords words. Words are

numbered starting at 1.

Returns a / b, where a and b are floating

point numbers.

Evaluates the attribute, passing each

item in list as %@ to the attribute.

Returns a list of each item that evalu-

ated to 1, delimited by a space or the

given optional delimiter.

Returns the first word of the string.

Returns a string consisting of the

current flags on the object.

=

Chapter 15 * MUCK and MUSH Programming 423
|S DSOGGSGSOGOO9HGHG OOOO 9HHOH0HHOOOHHHOOOHOOOOOE

floor (number) Returns the largest integer less than or
equal to the given number.

fold([object/]attribute, list[,base- Processes the list into the attribute,
case, delimiter]) passing the result of each iteration as %@

and the next item in the list as %1. The

base-case is uSed in the first iteration as

%@ if it is provided; otherwise, the first
list item is passed as %0 and the second
item as %1. You can supply an optional

delimiter if you want to use a delimiter

other than a space.

fullname (#database-reference) Returns the full name of the object with

the given database-reference.
get (object/attribute) Returns the specified attribute on the

given object.

get_eval(object/attribute) Returns the specified attribute on the

given object, but first performing &-
substitutions and function calls on the
attribute's value.

gt(integer7, integer2) Returns 1 if integer? is greater than

integer2; otherwise, returns 2.

gte(integer1, integer2) Returns 1 if integer? is greater than or

equal to integer2, @ otherwise.

hasflag(object, flag) Returns 1 if the object has the specified
flag; otherwise, 0.

home (object) Returns the object’s home.

idle(user) Returns the time in seconds that the

user has been idle. If the user is not

connected, nonexistent, or hidden from

you, returns -1.

index(list, character, first-item, Returns num-items items, starting from
num-items) the first-item in the list, using the

given character to delimit items in the

list. This allows items in the list to be

more than one word.

insert(list, position, word Returns the list with the given word
[,delimiter]) inserted into the position-th position in

the list. The list begins at element 1.

The optional delimiter may be used to

specify a delimiter other than a space.

Partullvne

GHDDVOOSHLGHOHOHOEGGHHHHSVHPQGHHGHI#HWOQSDHOSBDO WOHBISIOSP BDO IOIOBE
MUD Programming Guide

isdbref (string)

isnum(argument)

iter(list, eval-string [, delimiter])

lattr (object)

lcon(object)

lestr(string)

ldelete(list, position [,delimiter])

lexits(object)

ljust(string, width)

1n(number)

inum(number)

loc(object)

locate(object, string, flags)

lock(object[/lock])

log (number)

lt(integer1, integer2)

Returns 1 if the string is a valid database

reference, @ otherwise.

Returns 1 if the argument is a digit, 0 if

the argument is a letter or a symbol.

Evaluates each item in the list through

the eval-string, using the optional

delimiter to delimit items in the list.

The special symbol ## in the eval-string

will be replaced by each item in the

list.

Returns a list of the attributes on the

given object that have a non-null value.

Returns a space-separated list of items

from the object.

Converts the string to all uppercase

letters.

Deletes the item at the position-th

position from the list, using the

optional delimiter as a delimiter.

Returns a space-separated list of exits on

the object.

Returns the string, left-justified, in a

field of the given width.

Returns the natural log of the number.

Returns a list of consecutive numbers

from @ to (number -1).

Returns the database reference of the

location of the object.

Uses the given object to search for a

given string, based on the values of the

given flags. The flags are such things as

i for inventory, e for exits, and so on.

Consult the MUSH help for more detail.

Returns the named lock on the object,

or the default lock if no lock is specified.

Returns the logarithm base 10 of the

number.

Returns 1 if integer1 is less than

integer2; otherwise, returns @.

Chapter 15
9D OS SSSSOS S088 9GGHO0SO99 OO 9OH9HS0O89OHOO0O0EQOOO

lte(integer1, integer2)

lwho()

map([object/]attribute, list

[, delimiter])

match(string1, string2)

max(number1, number2, ..., numberN)

member(list, item)

merge(string1, string2, character)

mid(string, index, numchars)

min(number1, number2, ..., numberN)

mod(a, bd)

money (object)

MUDname ()

mul(a, b)

e MUCK and MUSH Programming 425

Returns 1 if integer1 is less than or equal

to integer2, @ otherwise.

Returns a list of object numbers of
connected users.

Passes each item in list to the attribute

as %@, and forms a new list from the

result. Delimits the new list using spaces
or the optional delimiter.

Returns 1 if string? matches string2;

otherwise, returns 0. string2 may

contain wildcards.

Returns the largest number in the list of
arguments.

Locates the position of the given item in
the list, where the given Jist is a series
of words and/or numbers, separated by
spaces. Returns 0 if the item is not in the
LIST.

Merges string? and string2 based on the

given character. If a character in string1

is the same as the given character, then
the corresponding character in the same
position in string2 is substituted into

string1. The two strings must be of
equal length.

Returns numchars characters from the

string, Starting at the specified index.

Returns the smallest number in the list

of arguments.

Returns a mod b (the remainder after

integer division).

Returns an integer equal to either the

amount of money object has, if it is a

player, or the value of the object itself.

Returns the name of the MUD.

Returns a multiplied by b.

Part Ill

DDDDOHOYOHHHHDOHOVOHOHHHD BOQ VOOHGSGHGHGISHVOGSS9G9BSS9G99G9099 OSE

MUD Programming Guide

name (object)

name (#database-reference)

nearby(object1, object2)

neq(integer1, integer2)

next (thing)

not (boolean)

num(object)

obj (object)

or(boolean1, boolean2, ..., booleanN)

owner (object)

parent (object)

parse(list, eval-string [,delimiter])

pi()

pos(string1, string2)

Returns the name of the object. The

object itself or a database-reference Can

be used as the argument.

Checks to see if object? and object2 are

near each other; returns 1 if they are, @ if

they aren’t. Two objects are considered

nearby if they are in the same room, or

if one is inside the other one.

Returns 1 if integer? is not equal to

integer2, 0 otherwise.

Returns the next non-DARK exit in a

room, if the thing is an exit. If the thing

is an object, returns the next item in the

inventory list that the object is in.

Otherwise returns #-1.

Returns the logical not of the given

boolean value.

Returns the database reference of the

object.

Returns the objective pronoun for the

object (him, her, it, Or them), based on

the @sex attribute of the object.

Returns 1 if any boolean argument

evaluates to true, @ otherwise.

Returns the database reference of the

object’s Owner.

Returns the database reference of the

object’s parent, #-1 if the object cannot

be found, or if you are not the owner of

object and the object is not set VISUAL.

Evaluates the given eval-string by

taking each item in the list and substi-

tuting it for ## in the eval-string,

returning a new list of the results,

separated by spaces or the optional
delimiter.

Returns pi.

Returns the position in string2 where
string? first appears.

JOS SBOE

Chapter 15

poss(object)

power(a, b)

r(register-number)

rand (number)

remove(string, wordnumber, numwords)

repeat(character, number)

replace(list, position, word

[,delimiter])

rest(string)

reverse(string)

revwords(string, [,delimiter])

rjust(string, width)

rloc(object, levels)

room(object)

round(number, places)

s(string)

search([player] [class=restriction])

e MUCK and MUSH Programming 427
OS OSOGESOQOOBDOO®S OOOO I HHHHHOHOOOVOHGHOHHOHOHOOOVOHOHOHOOOOLOO

Returns the possessive pronoun for the

object (his, her, its, or their), based on

the @sex attribute of the object.

Returns a to the b power, where a and b
are floating point numbers.

Returns the value of the given num-
bered register.

Returns a random number between o

and (number -1).

Returns the remainder of the string

after removing numwords words starting

at word number wordnumber. Words are
numbered starting at 1.

Returns a string made up of the given
character, repeated the given number of
times.

Replaces the position-th word in the

given list with the given word, using a

space or the optional delimiter to
delimit words in the list.

Returns everything but the first word of
string.

Reverses the string.

Reverses the order of the words in the

string, using spaces to delimit words, or
the optional delimiter.

Returns the string, right-justified, in a
field of the specified width.

Returns the location of the object’s

location, making levels nested 1oc()

calls at most.

Returns the database number of the

containing room that the object is in.

Rounds number to places decimal places.

Performs pronoun substitution on the
string.

Returns a list of objects that match the

search criteria. Operates the same way as
@search.

428 Part II] © MUD Programming Guide

1OODOHHOOOHHHOGHHVHLlOEOHHHGHH HG VOOGSH HHS SD OOH VG BHIIIVOOC

secs() Returns the number of seconds since

January 1, 1970.

secure(string) Replaces escaped characters in the

setdiff(list?, list2)

setinter(list?, list2)

setq(register-number, string)

setunion(list1, list2)

sign(number)

sin(number)

sort(list, flag [, delimiter])

space (number)

splice(list7, list2, word)

sqrt (number)

starttime()

stats([player])

string with spaces, so that the string

will not perform special character

escapes.

Set difference. Returns a sorted list of

the elements in list? that are not in

list2.

Set intersection. Returns a sorted list of

the elements that are in both list7 and

list2.

Copies the given string into numbered

register register-number.

Set union. Returns a sorted list of the

elements in list? and list2, combined,

minus any duplicates.

Returns 1, ®, or -1, depending on

whether the number is positive, zero, or

negative.

Returns the sine of the given number.

Sorts the list in ascending order, using

a space or the optional delimiter as the

delimiter between items in the list. The

flag indicates what type of sort to

perform: d for database reference, n for

numeric integer, f for floating-point,

and a for alphanumeric.

Returns a string consisting of the given

number Of spaces.

Splices the two lists together. If a word

in list? matches the given word, then

the word in corresponding position in

list2 is substituted in.

Returns square root of the number. The

number may not be negative.

Returns the date/time string when the

MUSH was last rebooted.

Returns statistics about the MUSH, or

the given optional player, similar to the

@stats Command.

Chapter 15
SOSSSSGGGSHGSS®9OHGGHGH GOOG OHHHOHHHOLHHSHOHHHOOQHOO’

strlen(string)

strmatch(string, pattern)

sub(a, b)

subj (object)

switch(test, action)

switch(test, action’, action2)

tan (number)

time()

trim(string [, flag

[, trim-character]])

trunc (floating-point -number)

type (object)

u([object/]attribute)

ucstr(string)

v(argument)

MUCK and MUSH Programming

Returns the number of characters in the

string.

Returns 1 if the entire string matches

the given pattern, and @ otherwise. Not

case sensitive.

Returns a - b.

Returns the subjective pronoun for the

object (he, she, it, they), based on the

@sex attribute of the object.

Evaluates the test, and then performs

the given action if the test is true;

otherwise, it does nothing. The test is

false if it evaluates to @, -1, or to the null

string. Otherwise, it’s true.

Evaluates the test, and then performs
action? if test is true and action? if test

is false. The test is false if it evaluates to

0, -1, or to the null string. Otherwise,

it’s true.

Returns the tangent of the given number.

Returns the current time on the ma-

chine on which the MUSH is running.

Trims the given string, on both sides by

default. Leading and trailing spaces are
trimmed unless the optional trim-

character is given. The flag can be b to

trim both sides, 1 to trim the left side,

and r to trim the right side.

Returns a truncated integer version of a

floating-point number.

Returns the object type of the object

(room, exit, thing, Or player).

Evaluates the given attribute.

Converts the string to all uppercase.

Returns the value of the variable speci-

fied as its argument. Some of the

possibilities include the following:

Returns the appropriate stack
value.

Returns the contents of the

appropriate object register.

429

430 Part Ill ¢ MUD Programming Guide

1D GOOOHOOVHHHHHGHHOHLQOOOHGHOHIDIPIOOHGHHH GD VB WSS GOIID WWII BE

v(attribute)

version()

where (object)

wordpos(string, index [,delimiter])

words (string)

Returns the object number of

whoever caused the action.

Return the object name of who-

ever caused the action, with its

first letter capitalized.

Returns the object name of who-

ever caused the action.

Returns the object number of the

object calling v().

Returns the value of the appropri-

ate attribute.

Returns version information pertaining

to the MUSH you are on.

Returns the “true” location of the

object, which is the actual location if

the object is a player or thing, the

source room if the object is an exit, or

#-1 if the object is a room.

Returns the number of the word within

the given string where the index charac-

ter falls. The words are delimited by

either spaces or the optional delimiter.

Returns the number of words in the

given string.

xor(boolean1, boolean2, ..., booleanN) Returns 1 if an odd number of the given

Flag Reference
Table 15.7 shows the various flags that you can set on objects.

Table 15.7. Flag reference.

Code Flag @set command

boolean values are true, @ otherwise.

Meaning

A

a

@set room=ABODE

@set object=AUDIBLE

Allows room to be a home for players.

Allows objects to transmit messages inside

of them to the outside room. (MUSH only)

Te

Chapter 15
SOBOOSHSHGS BOQ SGOHHDSGH OOOH GS HOHHSHOOHOYOHGHOHHOOHOOO

¢ MUCK and MUSH Programming 431

Code Flag @set command Meaning

B @set player=BUILDER Used on MUCKs and sometimes used on

MUSHes to indicate the player has building
privileges.

Cc @set object=CHOWN_OK Allows ownership of object to be changed.

. Denotes that a player is currently con-

nected. (MUSH only)

D @set room=DARK Prevents the listing of the room contents.

D @set object=DARK Object does not show up in room contents
list.

d @set object=DESTROY_OK Allows object to be destroyed by any player.
(MUSH only)

© @set object=ENTER_OK Allows object to be enterable. (MUSH only)

E Denotes an exit.

F @set room=FLOATING Suppresses the disconnected-room message.
(MUSH only)

G Used internally for edestroy, denotes a room
that is set to be destroyed. (MUSH only)

H @set room=HAVEN Disallows player killing in the room.

h Indicates that an object is halted. (MUSH
only)

i @set object=IMMORTAL Indicates an object is immortal, so it cannot

be killed and does not use up money.

Settable only by wizards. (MUSH only)

J @set room=JUMP_OK Allows players to @teleport into room.

K @set object=KEY Turns object into a key, which prevents
puppets from picking it up. (MUSH only)

1 @set object=LIGHT Allows object to be seen in a room that is
DARK. (MUSH only)

o @set object=LINK_OK Allows links to the object.

M @set player=MUCKER Allows player to create MUF programs in

MUCKs. (MUCK only)

M @set object=MONITOR Denotes an object that is a MONITOR. (MUSH
only)

m @set me=MYOPIC Treats you as if you did not own anything
when you use look or perform an automatic

look upon entering a room. (MUSH only)

continues

432 Part III e MUD Programming Guide

DODO ODOOHHOHHGHHG OOOOH HHHH GD 9GODH GHD FG BBVIA®QODISBIBVIGV9O®

Table 15.7. continued

Code Flag @set command Meaning

N @set

@set

@set

@set

@set

@set

@set

@set

@set

@set

@set

@set

@set

me=NOSPOOF

me=OPAQUE

object=puppet

me=QUIET

me=TERSE

object=STICKY

room=STICKY

object=SAFE

object=TRACE

exit=TRANSPARENT

player=UNFINDABLE

object=VISUAL

obj ect=VERBOSE

Adds additional output to @emit messages,

informing you who sent them. (MUSH only)

Prevents other players from seeing what you

are carrying; however, the other player can

see objects that you are carrying that they

own. (MUSH only)

Denotes a player.

Turns the object into a puppet. (MUSH

only)

Prevents you from hearing set or triggered

messages from objects that you own. (MUSH

only)

Prevents you from seeing the description,

contents, success or fail messages, and so

on, of the rooms that you enter. (MUSH

only)

Denotes a room.

Denotes a robot. (MUSH only)

Sets object sticky. Object goes home when

dropped.

Sets room sticky. Drop-to’s are delayed.

Forces you to use the /override switch when

@destroying the object. (MUSH only)

Reports all string substitutions on the object

to the object’s owner. Useful for debugging.

(MUSH only)

Allows a player looking at the exit to see the

room description of the room on the other

side of the exit, along with the exit’s de-

scription. (MUSH only)

Hides player from @whereis command.
(MUSH only)

Allows any player to see the object’s pro-
gramming. (MUSH only)

Causes all commands executed by the object

to be sent to the owner of the object.
(MUSH only)

we

Chapter 15 ¢ MUCK and MUSH Programming 433
®OGQLOLOPOOHEHOOOYHSHHOHOHOHOHHOHOHHHHOOOHOOE

Code Flag @set command Meaning

W @set player=wizard Denotes a wizard. Settable by wizards only.

x @set player=SLAVE The player may not perform any actions

that change the database, nor may any of

the player’s object’s change the database.

Settable only by wizards. (MUSH only)

Y @set object=PARENT_OK Any object that passes this object’s

ParentLock may make this object a parent of

any object it controls. (MUSH only)

Summary
In this chapter, you learned how to use and program MUSHes and MUCKs. You learned

how to set up your character, build rooms, create objects, and program the MUD.

Bad _ - lle abt ao eee

(5 ae SE

(te® VARs a;
-

so coke | aaf lh & ia

ibe =
- i

—— > ew 7 o opt ote i

Ss ne =F a a

ee Sieur @

mM ty - = -

a its 2s) (p04) ome DAS
y <2 Dy cta’® GMS a :

| ; no dip antl s =," uu

E ; ay

APPENDIX

THE INUD YELLow Paces

This appendix lists MUDs and MUD-related resources that can

be found on the Internet.

MUDs
This section is a list of over 300 different MUDs. Only LPMUDs,

DikuMUDs, MOOs, MUSHes, and MUCKs are shown because

they are the primary focus of this book. This MUD list has been

compiled from many other lists and sites on the WWW. At the

time of this writing, I have personally connected to all the MUDs

(and their URLs) listed here. However, the Internet is a rapidly

changing entity, and by the time you read this, some of the

addresses may have changed. When an address changes, often

the MUD will leave a pointer to the new site at the old site. MUDs

also tend to be very volatile, as they often are run by their

administrators as a hobby. So, do not be too surprised to find

that some of the MUDs that appear in this list do not work.

436 Appendixes
1D GOHOHHHHHOHHHHOSOHHHHHVIQVSOGGHOGHHVILVQA®H

For a more up-to-date listing, and for direct links to all the MUDs listed here, point your

Web browser at http: //www.mcp.com/sams/books/muds/mudlist.html.

Each entry has the MUD’s name, its Internet address in name and number form, its port

number, and a MUD type. LPMUD, DikuMUD, MOO, MUSH, and MUCK make up the

majority of entries in the MUD type category. The following other MUD types are used:

MudOS—MudOS is a derivative of LPMUD. You likely will not notice many

differences, but these MUDs are listed separately for accuracy.

Circle, MERC, ROM—These are different types of MUDs that were derived

from the original DikuMUD system.

PERN—Pern is the world in the Dragonriders of Pern series by Anne McCaffery,

and there are quite a few MUSHes and MOOs based on this world. Rather than

writing a description for each MUD designating it as a PERN MUD, /PERN has

been added to the end of the MUD type.

ST—The Storyteller system is a popular role-playing system used in The Vampire:

The Masquerade, Mage: The Ascension, and Werewolf: The Apocalypse, role-playing

games from White Wolf Games Studio. There are many MUSHes set in this

environment, which also is called the World of Darkness. Each MUSH is set in a

different city and will have a different flavor. If you are familiar with these role-

playing games, you probably will enjoy these MUSHes. If you are not familiar

with the system, you might want to buy one of the books before you try one of

these MUSHes. /st is added to the end of the MUD type to designate these types
of MUDs. For more specifics on this type of MUSH try:

http: //blackmagic.com/amy/mush. html.

Included are URLs for many MUDs. Many of the WWW sites for these MUDs are very
informative. They also should help you filter through this list and find MUDs you might
enjoy.

Some MUDs listed have a brief description. If the MUD is set in some world that you might
recognize, that is mentioned. It also is mentioned if the MUD has a special focus or if it
is the original or home MUD for a certain MUD type.

5th Dimension

MUD IP Name Address: gauss.ifm.liu.se

IP Number: 130.236.50.9

Port: 3000

MUD Type: MudOS

Acer Isle Virtual World

MUD IP Name Address: cave.pg.md.us

IP Number: 192.239.102.2

Port: 2222

MUD Type: MUSH

Appendix A ¢ The MUD Yellow Pages 437
9 OQ QL@WVDOOGHHO HOO HDOGSGHGSOHLlHHHHGHSHOOVHHSHOSGHOOHOHOGO

ADAMANT

MUD IP Name Address: rm600.informatik.th-darmstadt.de

IP Number: 130.83.9.19

Port: 4711

MUD Type: LPMUD

After Five

MUD IP Name Address: toybox.infomagic.com

IP Number: 165.113.211.2

Port: 9999

MUD Type: MUCK

URL: http: //ma.itd.com:8000/afterfive.html

Age of Legends

MUD IP Name Address: hub.eden.com

IP Number: 199.171.21.21

Port: 6969

MUD Type: MERC/ROM

Albanian

MUD IP Name Address: fred.indstate. edu

IP Number: 139.102.12.14

Port: 2150

MUD Type: DikuMUD

AlatiaMUD

MUD IP Name Address: aann.tyrell.net

IP Number: 192.175.8.12

Port: 3000

MUD Type: LPMUD

AlexMUD

MUD IP Name Address: alexmud.stacken.kth.se

IP Number: 130.237.234.3

Port: 000

MUD Type: DikuMUD

Comments: This is the original DikuMUD.

Altered DimensionsMUSH 2

MUD IP Name Address: spruce.evansville.edu

IP Number: 192.195.225.3

Port: 6250

MUD Type: MUSH
URL: http: //ww.math.okstate.edu/~russ/muds/amber.html

Comments: This MUSH is set in the world of Roger Zelzany’s Amber series. It also

uses elements of the Amber Diceless Role-Playing Game.

438 Appendixes
1D B® OOGOGHHHHH HOO HGOHGHHHHHDOPHOHGHGHO HD OOP OGSHO HA BVQVOOOSE

Ancient Anguish

MUD IP Name Address: ancient.anguish.org

IP Number: 199.34.48.6

Port: 2222

MUD Type: LPMUD

URL: http: //end2.bedrock.com/Ancient_Anguish/aa.html

Angalon

MUD IP Name Address: neuromancer.tamu.edu

IP Number: 128.194.47.9

Port: 3011

MUD Type: LPMUD

AngrealIMOO

MUD IP Name Address: j302604012.resnet.cornell.edu

IP Number: 128.253.150.10

Port: 9000

MUD Type: MOO

Comments: This is one of the few MOOs that focus on role-playing. It is a world

based on Robert Jordan’s Wheel of Time series.

Anime MUCK

MUD IP Name Address: eith.biostr.washington. edu

IP Number: 128.95.44.29

Port: 2035

MUD Type: MUCK

Apex

MUD IP Name Address: apex.ccs.yorku.ca

IP Number: 130.63.237.12

Port: 4201

MUD Type: MUSH

Apocalypse IV

MUD IP Name Address: sapphire. geo.wvu.edu

IP Number: 157.182.168.20

Port: 4000

MUD Type: DikuMUD

Arctic

MUD IP Name Address: arctic.csua.berkeley. edu

IP Number: 128.32.43.55

Port: 2700

MUD Type: DikuMUD

Aurora

MUD IP Name Address: aurora.etsiig.uniovi.es

IP Number: 156.35.41.20

Appendix A * The MUD Yellow Pages 439
Ss Ss Eh PSs LOO &SCOOSS®SSBOOGSHOSOSIOGHHHHHOOOHHHHOHHHOHOHHOHHHHOOOOOD

Port: 3000

MUD Type: MudOS

AustinMUD

MUD IP Name Address: imv.aau.dk
IP Number: 130.225.2.2

Port: 4000

MUD Type: DikuMUD

Barren Realms

MUD IP Name Address: liii.com

IP Number: 198.207.193.1

Port: 8000

MUD Type: MERC

BatMUD

MUD IP Name Address: bat.cs.hut.fi

IP Number: 130.223.40.180

Port: 23

MUD Type: LPMUD

URL: http: //bat.cs.hut.fi/

BayMOO

MUD IP Name Address: baymoo.sfsu.edu

IP Number: 130.212.41.251

Port: 8888

MUD Type: MOO

URL: http: //baymoo.sfsu.edu:4242/

Belior Rising

MUD IP Name Address: brazil-nut.enmu.edu

IP Number: 192.94.216.80

Port: 4301

MUD Type: MUSH/PERN

Bloodletting:Dublin by Night

MUD IP Name Address: piaget.psych.mun.ca

IP Number: 134.153.20.10

Port: 4991

MUD Type: MUSH/ST

Blue Facial MUD

MUD IP Name Address: dallet.channel1.com

IP Number: 199.1.13.9

Port: 1234

MUD Type: MERC

440 Appendixes

1G BOQOOOOSHHHOHHOOHHOHGHGHHD VIVO GGHHHIHD HOPG GHGSGISBIIIIIOOG

Boo MOO

MUD IP Name Address: pinot .callamer.com

IP Number: 199.74.141.2

Port: 1234

MUD Type: MOO

Brazilian Dreams

MUD IP Name Address: red_panda.tbyte.com

IP Number: 198.211.131.13

Port: 8888

MUD Type: MUCK

Camelot MUSH

MUD IP Name Address: camelot.cit.buffalo.edu

IP Number: 128.205.3.103

Port: 5440

MUD Type: MUSH

Castle D’Image
MUD IP Name Address: fogey.stanford.edu

IP Number: 36.22.0.31

Port: 5555

MUD Type: MUSH

CaveMUCK

MUD IP Name Address: cave.tcp.com

IP Number: 128.95.44.29

Port: 2283

MUD Type: MUCK

Chiba Sprawl MOO

MUD IP Name Address: chiba.picosof.com

IP Number: 165.227.31.2

Port: 7777

MUD Type: MOO

URL: http: //sensemedia.net/sprawl

Children of the Atom

MUD IP Name Address: bison. range.orst.edu

IP Number: 128.193.121.98

Port: 2099

MUD Type: MUSH

Comments: This MUSH is based on the X-men comic books by Marvel.

Chomestoru

MUD IP Name Address: dfw.net

IP Number: 198.175.15.10

Port: 4000

MUD Type: DikuMUD

Appendix A ¢ The MUD Yellow Pages

City of Darkness
MUD IP Name Address: melandra.cs.man.ac.uk

IP Number: 130.88.240.110

Port: 2000

MUD Type: MUSH/ST

Conspiracy

MUD IP Name Address: almond.enmu. edu

IP Number: 192.94.216.77

Port: 1066

MUD Type: MUSH

URL: http://www. uunet.ca/~kris/cons.html

Crossed Swords

MUD IP Name Address: shsibm. shh. fi

IP Number: 128.214.44.251

Port: 3000

MUD Type: MudOS

CrystaIMUSH

MUD IP Name Address: moink.nmsu.edu

IP Number: 128.123.8.115

Port: 6886

MUD Type: MUSH

Comments: This MUSH is set in the world of Anne McCaffrey’s Crystal Singer
series.

CyberSphere

MUD IP Name Address: vv.com

IP Number: 204.183.126.200

Port: 7777

MUD Type: MOO

URL: http: //ww.vv.com/cs/cybersphere.html

DaedalusMOO

MUD IP Name Address: daedalus.com

IP Number: 198.242.218.1

ROL mai

MUD Type: MOO

Danse Macabre

MUD IP Name Address: omega. acusd.edu

IP Number: 192.195.155.207

Port: 9999

MUD Type: MUSH/ST

441
GOO SO8SS9GHGH HOOD 9HGHOH90O8HHOHOOO0OOOG8

442 Appendixes
DDDWDOOOHHHGHHDH 9QOCHOG9 HDD VVOD HOG GSB BO9ODSSSOSBISSOGSOGSOS

Dark Castle

MUD IP Name Address: foxtrot. rahul.net

IP Number: 192.160.13.6

Port: 6666

MUD Type: DikuMUD

Dark Gift

MUD IP Name Address: sulaco.library.cmu.edu

IP Number: 128.2.21.47

Port: 6250

MUD Type: MUSH/ST

Dark Metal

MUD IP Name Address: pharos.acusd.edu

IP Number: 192.195.155.201

Port: 9999

MUD Type: MUSH

Dark Wind

MUD IP Name Address: darkwind.i-link.com

IP Number: 199.120.94.33

Port: 3000

MUD Type: LPMUD

Darker Realms

MUD IP Name Address: worf.tamu.edu

IP Number: 165.91.112.221

Port: 2000

MUD Type: LPMUD

Darkweb

MUD IP Name Address: steak. nmt.edu

IP Number: 129.138.14.19

Port: 6251

MUD Type: MUSH/ST

Dawn of the Immortals

MUD IP Name Address: immortals.ncsa.uiuc.edu

IP Number: 141.142.26.2

Port: 2000

MUD Type: LPMUD

URL: http: //ww.shsu. edu/~stdtde/doti.html

Dawn Sisters

MUD IP Name Address: arms.gps.caltech. edu

IP Number: 131.215.67.3

Port: 9944

MUD Type: MUSH/PERN

@
Appendix A ¢ The MUD Yellow Pages

Death’s Domain

MUD IP Name Address: cybernet.cse.fau.edu

IP Number: 131.91.80.79

Port: 9090

MUD Type: DikuMUD

Deeper Trouble

MUD IP Name Address: alk.iesd.auc.dk

IP Number: 130.225.48.46

Port: 4242

MUD Type: LPMUD

Desert Wings

MUD IP Name Address: jpd.ch.man.ac.uk

IP Number: 130.88.12.119

Port: 4201

MUD Type: MUSH/PERN

Discordia

MUD IP Name Address: discordia.phya.utoledo.edu

IP Number: 131.183.60.1

Port: 4201

MUD Type: MUSH

Diviniation Web

MUD IP Name Address: bill.math.uconn.edu

IP Number: 137.99.17.5

Port: 9393

MUD Type: MUCK

Doom MUD

MUD IP Name Address: neuromancer.hacks.arizona. edu

IP Number: 128.196.230.12

Port: 4000

MUD Type: DikuMUD

Dragon Dawn

MUD IP Name Address: cashew. enmu. edu

IP Number: 192.94.216.78

Port: 2222

MUD Type: MUSH/PERN

DragonDreams

MUD IP Name Address: jpd.ch.man.ac.uk

IP Number: 130.88.12.119

Port: 4444

MUD Type: MUSH/PERN

443

444 Appendixes
1DBDOQOOOHHOHHOHOOOHHHHHDHISOGHGHHHD IVS

Dragon’s Den
MUD IP Name Address: hellfire.dusers.drexel.edu

IP Number: 129.25.56.246

Rorts2222

MUD Type: LPMUD

DragonFire MUD

MUD IP Name Address: typo.ums1.edu

IP Number: 134.124.42.197

Port: 3090

MUD Type: LPMUD

DragonMUD

MUD IP Name Address: satan.ucsd.edu

IP Number: 132.239.1.7

Port: 4201

MUD Type: MUSH

URL: http: //is.rice.edu/~pengle/dragon/welcome. html

Dragonsfire

MUD IP Name Address: moo.eskimo.com

IP Number: 204.122.16.3

Port: 8888

MUD Type: MOO/PERN

DreaMOO

MUD IP Name Address: fiinix.mertronet.com

IP Number: 198.215.126.2

Port: 8888

MUD Type: MOO

DruidMuck

MUD IP Name Address: moink.nmsu.edu

IP Number: 128.123.8.115

Port: 4201

MUD Type: MUCK

EarthMUD

MUD IP Name Address: via.nl

IP Number: 193.78.61.1

Port: 2222

MUD Type: MudOS

URL: http: //via.n1:2217/

Edge of Darkness

MUD IP Name Address: edge.uccs.edu

IP Number: 128.198.1.70

Appendix A ¢ The MUD Yellow Pages 445
BGS QSOOGHOS GLOGS HHHOHOSHOOSVOOHOHHOOOGHHHHHHOOOOOOE

Port: 2001

MUD Type: DikuMUD

URL: http: //edge.uccs.edu/

Elements of Paradox

MUD IP Name Address: elof.acc.iit.edu

IP Number: 192.41.245.90

Port: 6996

MUD Type: MudOS

ElysuimMUSH

MUD IP Name Address: zeus.acsd.edu

IP Number: 192.195.155.205

Port: 9999

MUD Type: MUSH/ST

Empire

MUD IP Name Address: einstein. physics.drexel.edu

IP Number: 129.25.1.120

Port: 4000

MUD Type: DikuMUD

Enulal

MUD IP Name Address: istcprj1.u-aizu.ac.jp

IP Number: 163.143.125.114

Port: 2222

MUD Type: LPMUD

URL: http: //istcprj1.u-aizu.ac.jp:2224/

EON

MUD IP Name Address: mcmuse.mc.maricopa.edu

IP Number: 140.198.66.28

Port: 8888

MUD Type: MOO

Everdark

MUD IP Name Address: panzer.atomic.com

IP Number: 198.64.213.133

Port: 3000

MUD Type: LPMUD

Fantasia

MUD IP Name Address: betz.biostr.washington.edu

IP Number: 128.35.44.22

Port: 4201

MUD Type: MUSH

446 Appendixes
DODOHHOHOOOOHOOHHGDDLOOOGHOHHDY VQOGHGH DDD BQOOGGHH VIVO"

Farside

MUD IP Name Address: mud.atinc.com

IP Number: 198.138.35.198

Port: 3000

MUD Type: MERC

URL: http: //zeus.atinc.com/mud.html

Fiery

MUD IP Name Address: fiery.eushc.org

IP Number: 163.246.96.103

Port: 4000

MUD Type: DikuMUD

Final Challenge, The

MUD IP Name Address: mud.primenet.com

IP Number: 204.245.0.245

Port: 4000

MUD Type: MERC

Final Frontiers—TrekMOO

MUD IP Name Address: trekmoo.microserve.com

IP Number: 192.204.120.6

Port: 2499

MUD Type: MOO

URL: http: //ww.microserve.com/~trek/

Comments: This MOO is set in the world of Star Trek.

Final Realms

MUD IP Name Address: fr.hiof.no

IP Number: 158.36.33.52

Port: 2001

MUD Type: MudOS

First Light

MUD IP Name Address: gold.t-informatik.ba-stuttgart.de

IP Number: 141.31.1.16

Port: 3000

URL: http: //www.uni-giessen.de/~gdg3/mud/firstl.html

MUD Type: LPMUD

FredNet MOO

MUD IP Name Address: fred.net

IP Number: 198.76.178.2

Port: 8888

MUD Type: MOO

Appendix A ¢* The MUD Yellow Pages 447
DOGOVQlBOHHHHHOODHHGHHOHHOOIVHGHOSOOOOOOOE

FurryMUCK

MUD IP Name Address: sncils.cns.edu

IP Number: 138.74.0.10
Port: 8888

MUD Type: MUCK

Comments: This is the most popular MUCK and a popular MUD sex spot. Players

are anthropomorphic animals. This must-see MUD often is mentioned in articles
about MUDs.

Future Realms—TrekMUSH

MUD IP Name Address: ww. onramp.net

IP Number: 199.1.11.15

Port: 1701

MUD Type: MUSH

Comments: This MUSH is set in the world of Star Trek.

Garou

MUD IP Name Address: cesium.clock.org

IP Number: 17.255.4.43

Port: 7000

MUD Type: MUSH/ST

GateWay

MUD IP Name Address: idiot.alfred.edu

IP Number: 149.84.4.1

Port: 6969

MUD Type: MudOS

Genesis

MUD IP Name Address: spica3.cs.chalmers.se

IP Number: 129.16.227.203

Port: 3011

MUD Type: LPMUD

Comments: This is the original LPMUD.

Genocide

MUD IP Name Address: genocide.shsu. edu

IP Number: 192.92.115.145

Port: 2222

MUD Type: LPMUD/PK

URL: http://www. shsu.edu/~genlpc/

Comments: This is one of the first and still one of the most popular MUDs,

devoted exclusively to player killing. New wars start on a regular basis. At the

beginning of a war, all players are brought to life with equal skills and released

into the world to kill each other. There are both team and individual wars.

448 Appendixes

GOBDOOSOOHHSGDBOSHHGHHHGD DV PWOPGHGSGHIIOVOPOGHDSOOW®

Glass Dragon, The

MUD IP Name Address: surf.tstc.edu

IP Number: 161.109.32.2

Port: 4000

MUD Type: DikuMUD

URL: http: //surf.tstc.edu/~dmdurkee/

GodsHome

MUD IP Name Address: godshome.solace.mh.se

IP Number: 193.10.118.131

Port: 3000

MUD Type: DGD (LPMUD)

Gohs

MUD IP Name Address: valhalla.acusd.edu

IP Number: 192.55.87.27

Port: 9999

MUD Type: MUSH

Grimne

MUD IP Name Address: grimne.pvv.unit.no

IP Number: 129.241.210.223

Port: 4000

MUD Type: DikuMUD

URL: http: //ww.pvv.unit.no/~haralde/grimne/

GypsyMUD

MUD IP Name Address: hopi.dtcc. edu

IP Number: 138.123.84.240

Port: 4000

MUD Type: DikuMUD

Hall of Fame Mud

MUD IP Name Address: marvin.df.1th.se

IP Number: 130.235.88.94

Port: 2000

MUD Type: LPMUD

HARI MUD

MUD IP Name Address: tc®.chem.tue.nl

IP Number: 131.155.94.3

Port: 6997

MUD Type: LPMUD

Harper’s Tale

MUD IP Name Address: srcrisc.srce.hr

IP Number: 161.53.3.2

Port: 8888

MUD Type: MOO/PERN

Appendix A ® The MUD Yellow Pages 449
> 2B OOOEZSSSSHSGGSHO8B99GHGHHGHGVHGHSHOHOOHOOHHOOOHOOOOOOE

HAVEN

MUD IP Name Address: idrz07.ethz.ch

IP Number: 129.132.76.8

Port: 1999

MUD Type: LPMUD

Hero of the Lance 2

MUD IP Name Address: mud.technet.sg

IP Number: 192.169.33.110

Port: 4040

MUD Type: MERC/ROM

Highlands

MUD IP Name Address: jedi.cis.temple.edu

IP Number: 129.32.32.70

Port: 9001

MUD Type: MERC

HoloMUCK

MUD IP Name Address: collatz.mcrcim.mcgill.edu

IP Number: 132.206.78.1

Port: 5757

MUD Type: MUCK

HoloMUD

MUD IP Name Address: sprawl.fc.net

IP Number: 198.6.198.6

ROEteasaian

MUD Type: DikuMUD

Holy Mission

MUD IP Name Address: alijku0@5.edvz.uni-linz.ac.at

IP Number: 140.78.3.1

Port: 2001

MUD Type: LPMUD

Hypertext Hotel

MUD IP Name Address: duke.cs.brown.edu

IP Number: 128.148.37.8

Port: 8888

MUD Type: MOO

URL: http: //duke.cs.brown. edu: 8888/

Idea Exchange, The

MUD IP Name Address: imaginary.com

IP Number: 199.199.122.10

Port: 7890

MUD Type: MudOS

URL: http://www. imaginary.com:7885/index.html

450 Appendixes
1D OBWQSGOHOHHGHSOHPEOHGHHHOHHHOOPSHHOHOSOHDHIOSSGOGSIHDIOPIPDOGHIHH He

Igor MUD

MUD IP Name Address: igor.mtek.chalmers.se

IP Number: 129.16.61.113

Port: 1701

MUD Type: DGD (LPMUD)

ImagECastle

MUD IP Name Address: fogey.stanford.edu

IP Number: 36.22.0.31

Port: 4201

MUD Type: MUSH

Incarnations
MUD IP Name Address: lumley.cais.com

IP Number: 204.180.173.1

Port: 4201

MUD Type: MusH

Comments: This MUSH is set in the world of Piers Anthony’s Incarnations of

Immortality series.

Ivory Tower

MUD IP Name Address: marvin.macc.wisc.edu

IP Number: 192.217.237.7

Port: 2000

MUD Type: LPMUD

Jay’s House MOO

MUD IP Name Address: jhm.ccs.neu.edu

IP Number: 129.10.111.77

Port: 1709

MUD Type: MOO

URL: http: //jhm.moo.mud.org:7043/

Comments: This is a development oriented MOO where many of the latest new
MOO concepts are first implemented.

JeenusTooMUD

MUD IP Name Address: heegaard.mth.pdx.edu

IP Number: 131.252.40.91

Port: 4000

MUD Type: DikuMUD

Jurassic Weyr

MUD IP Name Address: adamwest.ins.cwru.edu

IP Number: 129.22.8.52

Port: 6250

MUD Type: MUSH/PERN

Appendix A ¢ The MUD Yellow Pages 451
2SESOO8 SBSGOOHS GODS GSOHS HH OOO VGHHHHH OOH OHHHHOHOLHVOHHOHOOOOOOOE

KallistiMUD

MUD IP Name Address: jadzia.peak.org

IP Number: 198.68.23.23

Port: 4000

MUD Type: DikuMUD

KAOS MUD

MUD IP Name Address: flower. aud.temple.edu
IP Number: 155.247.42.7

Port: 4000

MUD Type: DikuMUD

Kerovnia

MUD IP Name Address: atlantis. edu

IP Number: 204.97.113.150

Port: 1984

MUD Type: LPMUD

KoBra Mud

MUD IP Name Address: kobra.et.tudelft.nl

IP Number: 130.161.144.236

Port: 23

MUD Type: LPMUD

LambdaMOO

MUD IP Name Address: lambda. xerox.com

IP Number: 192.216.54.2

Port: 8888

MUD Type: MOO

Comments: The MOO of MOOs, a must-see just because it is LambdaMOO. This
is mentioned in all articles that appear in the popular press that talk about
MUDs.

Lands of Tabor, The

MUD IP Name Address: n/a

IP Number: 165.95.7.122

Port: 9999

MUD Type: LPMUD

Last Outpost

MUD IP Name Address: 1o.millcomm.com

IP Number: 199.170.133.6

Port: 4000

MUD Type: DikuMUD

452 Appendixes
1GGOOVOHHOHHHHOVOHHHGHHHY OOGOHHHHIDIGD 9 IOVPGHOGG ODI BDSO9GOSSE

Legend of the Winds
MUD IP Name Address: ccsun44.csie.nctu.edu. tw

IP Number: 140.113.17.168

Port: 4040

MUD Type: MERC

Loch Ness

MUD IP Name Address: armageddon. imp.ch

IP Number: 157.161.1.15

Port: 2222

MUD Type: MudOS

Looney

MUD IP Name Address: cp.tn.tudef1t.nl

IP Number: 192.31.126.102

Port: 8888

MUD Type: LPMUD

Lost Mud, The

MUD IP Name Address: goofy.cc.utexas.edu

IP Number: 128.83.108.24

Port: 6666

MUD Type: LPMUD

Lost Souls

MUD IP Name Address: lostsouls.desertmoon.com

IP Number: 198.102.68.58

Port: 3000

MUD Type: LPMUD

URL: http: //lostsouls.desertmoon.com/

LustyMud

MUD IP Name Address: lusty. tamu. edu

IP Number: 128.194.9.199

Port: 2000

MUD Type: LPMUD

MadROM

MUD IP Name Address: hector. turing.toronto.edu

IP Number: 128.100.5.10

Port: 1536

MUD Type: MERC/ROM
URL: http: //ww.io.org/~sofa

Marches of Antan

MUD IP Name Address: checfs2.ucsd. edu

IP Number: 132.239.68.9

Port: 3000

MUD Type: MudOS

Appendix A ¢ The MUD Yellow Pages 453
>SOGGODODYOGGHHHGOHHGHGHHHHOHHVOHHGHGHHOHHOHOLOOHOHHOHSGHOOOOOO

Masquerade, The

MUD IP Name Address: phobos.unm. edu

IP Number: 129.24.8.3

Port: 4444

MUD Type: MUSH/ST

Medieva Cyberspace

MUD IP Name Address: medievia.netaxs.com

IP Number: 198.69.186.36

Port: 4000

MUD Type: DikuMUD

Metaverse

MUD IP Name Address: metaverse. io.com

IP Number: 199.170.88.12
Port: 7777

MUD Type: MOO
Comments: This MOO is run by Steve Jackson Games and is a good resource for
people into role-playing games.

Midnight Sun

MUD IP Name Address: midnight -sun.ludd.luth.se

IP Number: 130.240.16.23

Port: 3000

MUD Type: LPMUD

URL: http: //mud.1ludd.1luth.se:80/midnight/

Might, Magic & Mushrooms

MUD IP Name Address: prime.mdata. fi

IP Number: 192.98.43.2

Port: 6047

MUD Type: DGD

MirrorMOO

MUD IP Name Address: mirror.ccs.neu.edu

IP Number: 129.10.112.76

Port: 8889

MUD Type: DGD (MOO)

MoonStar

MUD IP Name Address: pulsar.hsc.edu

IP Number: 192.135.84.5

Port: 4321

MUD Type: LPMUD

MooseHead SLED II

MUD IP Name Address: eskinews.eskimo.com

IP Number: 204.122.16.44

Port: 4000

MUD Type: DikuMUD

454 Appendixes
H®®HOQOOHHHHHHDHPOOVHHHHHDVBQOPWOSHHIHDVIWOVHHHHI IBV

Mortal Realms

MUD IP Name Address: hydrogen.ee.utulsa.edu

IP Number: 129.244.42.48

Port: 4321

MUD Type: MERC

Muddy Waters

MUD IP Name Address: hot.caltech.edu

IP Number: 131.215.9.49

Port: 3000

MUD Type: LPMUD

MuMoo

MUD IP Name Address: chestnut.enmu. edu

IP Number: 192.94.216.74

ROBES aizan

MUD Type: MOO

Mystic Adventure
MUD IP Name Address: miniac.etu.gel.ulaval.ca

IP Number: 132.203.14.100

Port: 4000

MUD Type: DikuMUD

NAILS

MUD IP Name Address: flounder.rutgers.edu

IP Number: 128.6.128.5

Port: 5150

MUD Type: MUCK

NamelessMUSH

MUD IP Name Address: occams.dfci.harvard.edu

IP Number: 134.174.51.13

Port: 6666

MUD Type: MUSH

NannyMUD

MUD IP Name Address: birka.lysator.liu.se

IP Number: 130.236.254.159

Port: 2000

MUD Type: LPMUD

NANVAENT

MUD IP Name Address: corrour.cc.strath.ac.uk

IP Number: 130.159.220.8

Port: 3000

MUD Type: MudOS

URL: http: //aragorn.uio.no/nanvaent /

Appendix A ¢ The MUD Yellow Pages 455
1DSODOOVDGISGHOHGGHODVHGOHHOSOOIVDOHHOHSHHHOOHVHHHOHOOOOHOOO

NecroMOO

MUD IP Name Address: cyberion.bbn.com

IP Number: 128.89.2.139

Port: 4242

MUD Type: MOO

NES Mush

MUD IP Name Address: snowhite.ee.pdx.edu

IP Number: 131.252.10.66

Port: 9999

MUD Type: MUSH

Comments: This MUSH is based on The Never-Ending Story.

New Hercules MUD

MUD IP Name Address: sunshine. eushc. edu

IP Number: 163.246.96.102

Port: 3000

MUD Type: DikuMUD

New Moon

MUD IP Name Address: jove.cs.pdx.edu

IP Number: 131.252.21.12

Port: 7680

MUD Type: MudOS

Nightmare

MUD IP Name Address: nightmare. imaginary.com

IP Number: 199.199.122.10

Port: 1701

MUD Type: MudOS

URL: http: //ww.imaginary.com:1696/Nightmare/Nightmare.html

Nirvana

MUD IP Name Address: elof.acc.iit.edu

IP Number: 192.41.245.90

Port: 3500

MUD Type: LPMUD

URL: http: //craig.stanford.edu/Nirvana/home.html

Northern Crossroads

MUD IP Name Address: ugsparc21.eecg. toronto. edu

IP Number: 128.100.13.101

Port: 9000

MUD Type: DikuMUD

Nuclear War

MUD IP Name Address: melba.astrakan.hgs.se

IP Number: 130.238.206.12

456 Appendixes

OOO OVOlVHHHGHHGVWWPOGHHHHHHOIGEGHHHHI SD IQOGSHGHGHHIIIWSVIIOIIIIOSé

Port: 23

MUD Type: LPMUD

URL: http: //ww.astrakan.hgs.se/nuke/nuke.html

OpalIMUD

MUD IP Name Address: opal.cs.virginia.edu

IP Number: 128.143.60.14

Port: 4000

MUD Type: DikuMUD

Other MUSH

MUD IP Name Address: pebkac.satelnet.org

IP Number: 198.30.149.9

Port: 4201

MUD Type: MUSH

Overdrive

MUD IP Name Address: castor.acs.oakland.edu

IP Number: 141.210.10.109

Port: 5195

MUD Type: MudOS

PaderMUD

MUD IP Name Address: mud.uni-paderborn.de

IP Number: 131.234.12.13

Port: 3000

MUD Type: DGD (LPMUD)

Paradox

MUD IP Name Address: adl.uncc. edu

IP Number: 152.15.15.18

Port: 10478

MUD Type: LPMUD

Pattern, The

MUD IP Name Address: epsilon.me.chalmers.se

IP Number: 129.16.50.30

Port: 6047

MUD Type: DGD

Comments: This is the home MUD for Dworkin’s Generic Driver (DGD). It is the

best place to go to ask DGD-related questions or to learn more about DGD.

Patternfall

MUD IP Name Address: misc.acf.nyu.edu

IP Number: 128.122.207.19

Port: 4444

MUD Type: MUSH

Comments: Another MUSH based on Roger Zelazny’s Amber series.

Appendix A ¢ The MUD Yellow Pages 457
>2QODDGSS OOS VSOGGGHO VOD HHGHGHOS HOV HHHHHHHOHHHHHHHOHHOOOOOOE

Perilous Realms

MUD IP Name Address: pr.mese.com

IP Number: 155.229.1.4
Port: 23

MUD Type: DikuMUD
Comments: This is a very customized version of DikuMUD. It’s hard to find
many similarities to the standard DikuMUD set-up.

PernMUSH

MUD IP Name Address: astral.magic.ca

IP Number: 199.166.230.69

Port: 4201

MUD Type: MUSH/PERN

pPHANTAZM

MUD IP Name Address: fpa.com

IP Number: 198.242.217.1

Port: 4000

MUD Type: Circle

Phidar

MUD IP Name Address: cdsgw. crystaldata.com

IP Number: 198.49.103.129

Port: 9000

MUD Type: MERC/ROM

Phoenix

MUD IP Name Address: albert .bu.edu

IP Number: 128.197.74.10

Port: 3500

MUD Type: MudOS

PiliusMUD

MUD IP Name Address: hopi.dtcc.edu

IP Number: 38.123.84.240

Port: 5757

MUD Type: Circle

PK MUD

MUD IP Name Address: kennedy.ecn.uoknor. edu

IP Number: 129.15.112.38

Port: 5000

MUD Type: DikuMUD/PK

PMC-MOO

MUD IP Name Address: hero. village.virginia.edu

IP Number: 128.143.200.59

OTC aia,

MUD Type: MOO

458 Appendixes
1DHOHOHQSDOHOHHGHGDVOOGHGHHSHD I WOEGHGOGHGD BD WOGHSGOIIIVVVSBOSIIG

PrairieMUSH

MUD IP Name Address: prairienet.org

IP Number: 192.17.3.3

Port: 4201

MUD Type: MUSH

PrimalIMUD

MUD IP Name Address: jeack.apana.org.au

IP Number: 202.12.87.82

Port: 4000

MUD Type: Circle

Psycho-thriller

MUD IP Name Address: atlantis.edu

IP Number: 204.97.113.150

Port: 3000

MUD Type: LPMuD/PK

Quovadis

MUD IP Name Address: mud.imp.ch

IP Number: 157.161.1.10

Port: 2345

MUD Type: LPMUD

Ragnarok

MUD IP Name Address: rag.com

IP Number: 192.108.254.22

Port: 2222

MUD Type: LPMUD

URL: http: //www.rag.com/ or http://ragnarok.teleport.com/

Realm of Magic

MUD IP Name Address: p106.informatik.uni-bremen.de

IP Number: 134.102.216.7

Port: 4000

MUD Type: Circle

Comments: This DikuMUD was used as a reference throughout this book (for

DikuMUD-related material).

Realms of Imagination

MUD IP Name Address: foxtrot.rahul.net

IP Number: 192.160.13.6

Port: 4000

MUD Type: DikuMUD

Appendix A ¢ The MUD Yellow Pages 459
DOOSSSOSSSSSG GHG OG IHHHHGH GHEY HGHHHHHOOOHHHHOHOOOOOOOE

Realms of the Dragon

MUD IP Name Address: cm-u04.umd.umich.edu

IP Number: 141.215.69.7

Port: 3000

MUD Type: MudOS

RealmsMUCK

MUD IP Name Address: eith.biostr.washington.edu

IP Number: 128.95.44.29

Port: 7765

MUD Type: MUCK

RealmsMUD

MUD IP Name Address: realms.dorsai.org

IP Number: 198.3.127.200
Port: 1501

MUD Type: LPMUD

Comments: This LPMUD was used as a reference throughout this book.

Regenesis

MUD IP Name Address: birka.lysator.liu.se

IP Number: 130.236.254.159

Port: 7475

MUD Type: LPMUD

Renegade Outpost

MUD IP Name Address: mercury.cnct.com

IP Number: 165.254.118.47

Port: 9999

MUD Type: DikuMUD

Requiem

MUD IP Name Address: gangrel.hybrid.com

IP Number: 198.13.9.3

Port: 2030

MUD Type: MUSH/ST
URL: http: //ww. best .com/~wyldefyr/requiem.html

Revenge of End of the Line

MUD IP Name Address: mud.stanford.edu

IP Number: 36.21.0.99

Port: 2010

MUD Type: LPMUD

460 Appendixes
1D G®HOWOSHHOHHHHDVIOOHHHHIO VY WOOGHDOHGHSDDOWOPHOIGOé

Rift
MUD IP Name Address: cave.pg.md.us

IP Number: 19.239.102.2

Port: 4444

MUD Type: MUSH

Comments: This MUSH is set in the worlds of Raymond E. Feist’s Riftwars saga.

RockyMud
MUD IP Name Address: hermes.dna.mci.com

IP Number: 166.41.48.146

Port: 4000

MUD Type: DikuMUD

Rogue

MUD IP Name Address: rogue.coe.ohio-state.edu

IP Number: 128.146.144.12

Port: 2222

MUD Type: LPMUD/PK

RoninMUD

MUD IP Name Address: ronin.bchs.uh.edu

IP Number: 129.7.2.127

Port: 5000

MUD Type: DikuMUD

URL: http: //1sma28.jsc.nasa.gov/

Sanctuary

MUD IP Name Address: pauli.sos.clarkson. edu

IP Number: 128.153.32.10

Port: 9000

MUD Type: DikuMUD

Sanguinis Nobilis

MUD IP Name Address: colossus.acusd. edu

IP Number: 192.195.155.200

Port: 4444

MUD Type: MUSH/ST

Shadowdale

MUD IP Name Address: dale.hsc.unt.edu

IP Number: 129.120.104.40

ROntaaian

MUD Type: DikuMUD

Shadowrun MUSH

MUD IP Name Address: picard.dnaco.net

IP Number: 204.95.80.4

Port: 4201

Appendix A ¢ The MUD Yellow Pages 461
©BSQOQHGHDOGGHOOGGHOHHGHOSHI I VHSGHOHH HOH IHOHHOHOOOHOHSO

MUD Type: MUSH

URL: http: //jhm.moo.mud.org:7043/

URL: http://www. dnaco.net/~shadow/

Comments: This MUSH is set in the world of FASA’s Shadowrun role-playing
game series.

Shadow’s Edge

MUD IP Name Address: wubba. lowe. org

IP Number: 192.195.202.22

Port: 4000

MUD Type: LPMUD

Shards

MUD IP Name Address: vesta.unm. edu

IP Number: 129.24.120.253

Port: 7777

MUD Type: MUSH/PERN

Silicon Realms

MUD IP Name Address: sampan.ee.fit.edu

IP Number: 163.118.30.9

Port: 4000

MUD Type: DikuMUD

Sloth II

MUD IP Name Address: ai.cs.ukans.edu

IP Number: 129.237.80.113

Port: 6101

MUD Type: DikuMUD

SouCon

MUD IP Name Address: beechnut.enmu. edu

IP Number: 192.94.216.86

Port: 4201

MUD Type: MUSH/PERN

SPAM MUD

MUD IP Name Address: ganymede.ics.uci.edu

IP Number: 128.195.10.9

Port: 5000

MUD Type: MERC/ROM

Split Second

MUD IP Name Address: lestat.shv.hb.se

IP Number: 193.10.174.40

Port: 3000

MUD Type: LPmuD

462 Appendixes
GDOHOHOOHHHHHHDHLQPGOHGHHHII IVOGHOHDSVD BIG OS GHOSE

StackMUD

MUD IP Name Address: marcel.stacken.ktn.se

IP Number: 130.237.234.17

Port: 8000

MUD Type: MERC

StickMUD

MUD IP Name Address: lancelot.cc.jyu.fi

IP Number: 130.234.40.4

Port: 7680

MUD Type: LPMUD

Stick in the MUD

MUD IP Name Address: ugsparc31.eecg.utoronto.ca

IP Number: 128.100.13.111

Port: 9000

MUD Type: MERC/ROM

StrikeNet

MUD IP Name Address: mozart.fin.depaul.edu

IP Number: 140.192.40.5

Port: 4000

MUD Type: DikuMUD

STYX

MUD IP Name Address: dreamtime.nmsu. edu

IP Number: 128.123.8.116

Port: 3000

MUD Type: MudOS

Sword Quest

MUD IP Name Address: kennedy.ecn.uoknor. edu

IP Number: 129.15.112.38

Port: 5500

MUD Type: DikuMUD

SwordsMUSH

MUD IP Name Address: world.std.com

IP Number: 192.74.137.5

Port: 4201

MUD Type: MUSH

Comments: This MUSH is set in the world of Fred Saberhagen’s Book of Swords

series.

Tapestries

MUD IP Name Address: tapestries.tcp.com

IP Number: 128.95.44.29

Port: 2069

MUD Type: MUCK

Appendix A ¢ The MUD Yellow Pages 463
)®®V®BOWDSGOGOOLVSOOHGHHHGHOHQYIHOGHGHHHOOOHGOHHHHHOOONHOOO

TAPPMUD

MUD IP Name Address: surprise. pro.ufz.de

IP Number: 141.65.40.11

Port: 6510

MUD Type: LPMUD

Temple of Syrinx MOO

MUD IP Name Address: cimsun.aidt.edu

IP Number: 192.211.38.63

Rorte2it2

MUD Type: MOO

Terminal Guidance MUD

MUD IP Name Address: shire.ncsa.uiuc.edu

IP Number: 141.142.103.6

Port: 6969

MUD Type: DikuMUD

Tesseract

MUD IP Name Address: mud.ior.com

IP Number: 199.79.239.13

Port: 9000

MUD Type: DikuMUD/ROM

Texas Twilight

MUD IP Name Address: seds.1pl.arizona.edu

IP Number: 128.196.64.66

Port: 6250

MUD Type: MUSH/ST

Thunderdome II

MUD IP Name Address: tdome.montana. edu

IP Number: 199.2.139.3

Port: 5555

MUD Type: Circle

Timewarp

MUD IP Name Address: quark.gmi.edu

IP Number: 192.138.137.39

Port: 5150

MUD Type: LPMUD

TinyCWRU

MUD IP Name Address: caisr2.caisr.cwru.edu

IP Number: 129.22.24.22

Port: 4201

MUD Type: MUSH

464 Appendixes
D®DOOHOGOHHHHHGHHHOOOHHHHHIHI HOG OHHH GHIHY WOSOHGHGHHID DOO VOSHH HIVE

TinyTIM

MUD IP Name Address: yay.tim.org

IP Number: 155.37.1.251

Port: 5440

MUD Type: MUSH

URL: http: //yay.tim.org/TIMhome.htm1

TMI-2

MUD IP Name Address: tmi-2.ccs.neu.edu

IP Number: 129.10.114.86

Port: 5555

MUD Type: MUD

URL: http: //tmi.1p.mud.org:5550/

Comments: This is the home of MudOS. TMI is short for The MUD Institute, and

it is a good place to go to ask questions relating to LPC and programming

LPMUDs and MudOS MUDs.

ToonMUSH 3

MUD IP Name Address: brahe.phys.unm. edu

IP Number: 198.59.169.11

Port: 9999

MUD Type: MUSH

ToonMUSH 4

MUD IP Name Address: occams.dfci.harvard.edu

IP Number: 134.174.51.13

Port: 7777

MUD Type: MUSH

TrekMUSE

MUD IP Name Address: grimmy.cnidr.org

IP Number: 128.109.179.14

Port: 1701

MUD Type: MUSH

URL: http: //grimmy.cnidr.org/

Comments: This MUSH is set in the world of Star Trek.

Trinity MUSH

MUD IP Name Address: nomadd. fiu. edu

IP Number: 131.94.66.12

Port: 4201

MUD Type: MUSH/ST

TrippyMUSH

MUD IP Name Address: pebkac.satelnet.org

IP Number: 198.30.149.9

Port: 7567

MUD Type: MUSH

Appendix A ¢ The MUD Yellow Pages 465
D@OGOHOQ®ODHHOSOGLl®HGHOSHHHHHVHHGHOHGHSHHHOOH OOOH!

TRON

MUD IP Name Address: polaris. king.ac.uk

IP Number: 141.241.84.65

Port: 3000

MUD Type: LPMUD

Tsunami

MUD IP Name Address: adept.csse.muroran-it.ac.jp

IP Number: 157.19.133.2

Port: 7680

MUD Type: MudOS

TUBMUD

MUD IP Name Address: morgen.cs.tu-berlin.de

IP Number: 130.149.19.20

Port: 7680

MUD Type: LPMUD

Turf

MUD IP Name Address: teaching6.physics.ox.ac.uk

IP Number: 163.1.245.206

Port: 4000

MUD Type: MERC

URL: http: //sable.ox.ac.uk/~microsoc/turf.html

Twilight MUD

MUD IP Name Address: boreal.alfred.edu

IP Number: 149.84.33.4

Port: 1234

MUD Type: MERC

Two Moons

MUD IP Name Address: lupine.org

IP Number: 204.97.2.40

Port: 4201

MUD Type: MUSH

URL: http: //ww.lupine.org/TwoMoons/Title.html

Comments: This MUSH is set in the world of E/fQuest.

Unbridled Desire

MUD IP Name Address: epona.magibox.net

IP Number: 199.171.80.3

Port: 8888

MUD Type: MUCK

University of MOO

MUD IP Name Address: moo.cs.uwindsor.ca

IP Number: 137.207.192.76

466 Appendixes
BBD OOHHHHOHHHOHOGHHHHHHHOHOGHHDHHHOHHVOVHSGOOHHSVVQOSOGSOOH®

ROL

MUD Type: MOO

Unsafe Haven

MUD IP Name Address: sibylline.com

IP Number: 199.2.240.10

Port: 4000

MUD Type: Circle

URL: http: //ww.primenet.com/~stormie/mud.html

Valhalla

MUD IP Name Address: valhalla.com

IP Number: 192.187.153.1

Port: 2444

MUD Type: LPMUD

Valhalla MOO

MUD IP Name Address: valhalla.acusd. edu

IP Number: 192.55.87.27

Port: 4444

MUD Type: MOO

Valhalla MUD

MUD IP Name Address: mud.stacken.kth.se

IP Number: 130.237.234.3

Port: 4242

MUD Type: DikuMUD

Veil of Seduction

MUD IP Name Address: purple.cybernetics.net

IP Number: 198.80.48.9

Port: 6250

MUD Type: MUSH/ST

Vertigo

MUD IP Name Address: vertigo. apana.org.au

IP Number: 203.0.12.1

Port: 2001

MUD Type: MudOS

VIE-MUD

MUD IP Name Address: mud.cs.odu. edu

IP Number: 128.82.6.30

Port: 4000

MUD Type: DikuMUD

Appendix A ¢* The MUD Yellow Pages 467
GOBSSSSSS9OSVS9GSSSOSS 09S 9OGS9HGS9OO9SHH99SOCOOSOOE

Viking

MUD IP Name Address: viking. pvv.unit.no

IP Number: 129.241.190.14

Port: 2001

MUD Type: MudOS

URL: http: //ww.pvv.unit.no/viking/

Virtual World of Magma

MUD IP Name Address: magma.leg.ufrj.br

IP Number: 146.164.70.193

Port: 4000

MUD Type: Circle

Void, The

MUD IP Name Address: rosebud.umiacs.umd.edu

IP Number: 128.8.120.103

Port: 4000

MUD Type: Circle

WackoMUSH

MUD IP Name Address: red-branch.mit.edu

IP Number: 18.199.0.29

Port: 6003

MUD Type: MUSH

Wayne’s World

MUD IP Name Address: drake.eushc.org

IP Number: 163.246.32.100

Port: 9000

MUD Type: DikuMUD

Windy MUD

MUD IP Name Address: bitsy.apana.org.au

IP Number: 203.2.134.3

Port: 2000

MUD Type: LPMUD

WriteMUSH

MUD IP Name Address: palmer.sacc.colostate.edu

IP Number: 129.82.169.4

Port: 6250

MUD Type: MUSH

Comments: This MUSH is for the teaching and discussion of writing.

Zen MOO

MUD IP Name Address: chesire.cc.oxy.edu

IP Number: 134.69.1.253

ROttanc7

MUD Type: MOO

468 Appendixes

ODDS O9OSHHHSHGSH 9099 G99999S999S 09 098965

Zombie

MUD IP Name Address: linux1.sjoki.uta.fi

IP Number: 192.98.82.5

Ront3333

MUD Type: LPMUD

Mail-Order MUD List
You can get an e-mail subscription to the Doran MUD list bymailing mudlist@lore.calpoly.edu

with suBscrIBE as the subject. If you just want to see the latest copy and not subscribe, use

ISSUE in the subject line. These should be capitalized. The Doran MUD list appears to be

one of the most up-to-date and complete.

Usenet Newsgroups Relating to MUDs
This section talks about the Usenet newsgroups that relate to MUDs and includes a brief
summary of each.

rec.games.mud.admin
This newsgroup is devoted to administrative issues of MUDs. For example, you

often will find postings here when MUDs are looking for new wizards; however, you

also might check in the newsgroups that relate specifically to the MUDs in which you are

interested. You also will see many postings asking for machines where people can run
their MUDs.

rec.games.mud.announce
This newsgroup is moderated and contains informational articles on MUDs, as well as
announcements about new MUD openings, MUD closings, and other general informa-
tional announcements.

rec.games.mud.diku
This newsgroup is devoted to DikuMUD and its derivatives (Circle MUD, MERC, and so
on).

rec.games.mud.I|p
This newsgroup is devoted to LPMUD and its derivatives (MudOS) and related topics
(LPMUD MUDlibs).

Appendix A ¢ The MUD Yellow Pages 469
) @DOVBOHOOVIOSSHHOHSOOYHHGHHSHSHOVHHHOSHOOOHSOO:

rec.games.mud.misc
This newsgroup is for MUD-related topics that do not fall into other categories. For

example, MUDs that do not fall into another category probably will be discussed here.

rec.games.mud.tiny
This newsgroup is for TinyMUD and its derivatives (MUSHes, MUCKS, and MOOs).

When posting on one of these newsgroups, please make sure it is the appropriate group.

For example, do not post a question about LPC (the programming language of LPMUDs)

on rec.games.mud.tiny—post it on rec.games.mud. 1p.

Other Net News
There is a second tier of Net news in the alt.* hierarchy. It is very easy to create alt

newsgroups (whereas the rec newsgroups are organized and controlled), and hence, there

often are new groups created every day and groups also go away on a regular basis. alt

newsgroups tend to have a lot more noise and a lot less focus than rec newsgroups. If you

are interested, search periodically for MUD or MOO and perhaps you will find new groups

as they are created. These groups existed at the time of this writing, but may not exist when

you read this.

alt.mud
This newsgroup is fairly active and has a lot of MUD-related announcements as well as

“where are you” or “where is this MUD” type of inquiries.

alt.flame.mud
This newsgroup appears to be related to flaming MUDs. (Flaming is basically bashing or

negative talk about something or somebody.)

MUD Resources on the World Wide Web
The World Wide Web is the fastest growing part of the Internet. It has a very good system

for organizing information. As such, there is a lot of MUD-related information on WWW.

This section introduces MUD-related sites and provides a brief description of each site.

470 Appendixes
O99 OQOGHOHHHHHVDOGGHHHHHHD DOOEHGHHHGHHVVVQOOSOSOOE

General MUD Resources on the World Wide Web
This section lists sites that provide very general MUD information and are good WWW

starting points for MUD resources.

Hyperlinked Version of the MUD Frequently Asked
Questions List

http: //math.okstate.edu/~jds/mudfags.html

The MUD FAQ that has been quoted several times in this book is available here in a

hyperlinked format.

The MOO-Cows Frequently Asked Question List
http: //www.ccs.neu.edu/home/fox/moo/moofaq. html

In a question and answer format, this FAQ has some hyperlinks and also answers to many

MOO technical questions and programming issues. This FAQ also has a general section

for more basic MOO questions and probably is a good place to start if you want to set up
a MOO.

The MOO Help System in WWW Format
http: //jh.ccs.neu.edu:7043/help/subject!summary

This MOO is a good way to familiarize yourself with MOO commands. While not
completely hyperlinked, this server can be good for navigating through the MOO help
system in a hierarchical format so that you can take a look at all the commands in each
category.

The MUD Resource Collection from Lydia Leong
http: //www.cis.upenn.edu/~lwl/mudinfo.html

This collection is a comprehensive resource for MUD-related information. This site is a
great starting point for those interested in learning more about the MUD via the WWW.
This site has a large list of pointers to other MUD-related WWW sites. Although it covers
all MUD types, it has a wide selection of MUSH-related material.

Fran Litterio’s Multi-User Dungeon Page
http: //draco.centerline.com:8080/~franl/mud.html

This is another complete, general MUD site. This site has links to many MUD-related
pages, but its focus leans a little more towards MOOs.

Appendix A ¢ The MUD Yellow Pages 471
BOSSSSSOS O88 SOGGHS0 GS 9 O08 0O9G09000090SS9900008000'

The aragon.uio.no WWW Server for MUD Information
http: //aragorn.uio.no/

Dedicating itself to being the WWW MUD starting point, this site has many links to other
MUD information, with a focus on LPMUD-related links.

MUDS @ Lysator
http://www. lysator.liu.se:7500/mud/main. html

This is a generic MUD page with pointers to a lot of other MUD info. It includes a link

(http://www. lysator.liu.se:7500/mud/The_Dragon_ate...html) to a Wired article on MUDs.

The MUDdex
http: //www.ccs.neu.edu/home/1pb/muddex. html

This is a good cross-section of MUD information. This site provides an eclectic, but

interesting, assortment of MUD information. A special focus is given to MUD history.

Introduction to MU*s
http://www. vuw.ac.nz/who/Jamie.Norrish/mud/mud. html

This is a nice collection of interesting Web pages that have to do with MUDs. Many of the

links are theoretical in nature, regarding the development of combat systems and the level

of realism. There are many documents on MUD design.

Lists of MUDs in a WWW Format
Following are the most popular MUD lists that you can browse or search via the World
Wide Web.

Cardiff's MUD Page
http: //ww.cm.cf.ac.uk:8@/User/Andrew.Wilson/MUD1list/

The actual page for searching for MUDs is

http: //ww.cm.cf.ac.uk:80/htbin/AndrewW/MUDlist/mud_1list_search?DORANS

This site has links to other MUD-related sites, but its main attraction is the searchable

MUD list. You can search for MUDs by name or type. Based on the Doran MUD list, this

site has a large database MUD and is a good place to go if you need to find the address of

a MUD, or if you just want to check out what new MUDs are out there.

472 Appendixes
©99OHOOHHHHHHDHOGHHOHHHDDWISOGHHDIDISGOOPGPSDIH OWE

Scott Geiger’s MUD List
http: //b63062.STUDENT.cwru.edu:80/~mudlist/mud/list.html

This is a large MUD list compiled and maintained by Scott Geiger. This list has over S00

entries and is updated regularly.

The Nightmare LPMUD List
http://nightmare.imaginary.com:1696/gateways/mudlist

This list is a dynamically maintained list of LPMUDs that are part of the LPMUD/MudOSsS

InterMUD communications systems. It only displays MUDs that are currently up.

The Almost-Complete List of MUSHes
http: //www.cis.upenn.edu/~1lwl/muds. html

Another Lydia Leong creation, this is a large list of MUSHes with a brief description of each

and a telnet hyperlink for each MUSH. Also, each entry is color-coded to designate the

theme.

RiffRaff's Unofficial List of DikuMUD Home Pages
http: //www.webcom.com/~feline/mudhome. html

This is a list of DikuMUDs with WWW pages.

MUD Technical and Programming Information
This section provides pointers on technical and programming information about MUDs

that can be accessed via the World Wide Web.

LPC Guide
http://www. lysator.liu.se:7500/mud/lpc. html

This is a hyperlinked guide to LPC, the programming language used on LPMUDs. It

includes hyperlinks to the list of LPC efuns, other LPC programming information, and the

Beginner’s and Intermediate LPC Manuals by Descartes of Borg.

The MudOS Manual Pages in WWW Format
http: //aragorn.uio.no/nanvaent/manpages/

See the MudOS manual pages (online help) in a hyperlinked format. MudOS (an LPMUD
derivative) uses a variant of LPC.

Appendix A ¢ The MUD Yellow Pages 473
SOBSSOOSSSSSSSHGS OS OOS 9SSG8SO9089SHOH0O0008000E

The LambdaMOO Programmer's Manual—Table of
Contents

ftp://parcftp.xerox.com/pub/MOO/ProgrammersManual.texinfo_toc.html

The first site is often busy, so here is an alternate site:

http://keck.tamu.edu/cgi/MOO/ProgrammersManual.texinfo_toc.html

This is Pavel Curtis’ LambdaMOO Programmer’s Manual in a hyperlinked format. This is

the most well-known programming reference for LambdaMOO development.

The CircleMUD Home Page
http: //www.cs.jhu.edu/other/jelson/circle.html

This WWW page is a resource for CircleMUD information. CircleMUD is a derivative MUD

driver that was developed from the original DikuMUD code.

Academic Papers Concerning MUDs
MUDs are powerful and can be used for many things other than games. This section lists

WWW links for pages discussing other uses of MUDs and academic papers on MUDs.

SunSITE: Papers: Communications
http: //sunsite.unc.edu/dbarberi/comm-papers.html

Part of the massive SunSITE WWW server, this particular page has links to and abstracts

for many papers having to do with MUDs, MOOs, IRC, and other virtual communities.

If you are interested in more scholarly thoughts on these types of environments, the

papers here would be a good start.

The Lost Library of MOO
http: //lucien.berkeley.edu/moo.html

This site has pointers to many MOO- and MUD-related research papers. It also has

pointers to other archives of papers. Unfortunately, many of the papers pointed to by this

site are only available in Postscript format.

474 Appendixes
D®OOOOOHSHGHHHI OOO OHSHHDIDIVSOGHOGHHIDIIOQOSSOVE

Collaborative Networked Communication: MUDs as
Systems Tools

http: //www.ccs.neu.edu/home/django/docs/cncemast.html

This is a paper that discusses the use of MUDs as a tool for corporate and academic

information systems. This is a good paper to read if you want to see some of the potential

uses of MUDs outside of gaming and basic socializing.

The Integration of MUDs and the World
Wide Web

As the World Wide Web has grown in popularity, the idea of integrating MUDs and the

World Wide Web has received some attention. The sites that follow point to information

and research on this topic.

MOO-WWW Research Directory
http: //www.maths.tcd.ie/pub/mud/moo-www/rdir/rd.html

This is a list that covers many of the WWW pages available relating to the integration of

WWW and MOOs.

WWW MUD Implementations
http: //www.ccs.neu.edu/home/nop/mudww. html

This site has pointers to and a brief discussion of two MOOs (Jay’s House MOO and Cardiff

MOO) that have extensions that allow growing of the MOOs through a WWW interface.

This is a good page for learning more about the merging of WWW and MUDs.

Phoenix: A Web/MOO Client
http: //www.bsd.uchicago.edu/Staff/Web_ Notes/MOO-overview.html

This is a discussion of another interface to MOOs through the WWW. This site talks a lot
about BioMOO, which is a MOO specifically for biologists and with an experimental
WWW interface.

Appendix A ¢ The MUD Yellow Pages 475
DODDDOSSSPSHHGGHOLVIHDHGHHGHGHOVIDHHHHHHODHHOHHHHHOOOH HOOK

Technical Documentation on web2mush
http: //nimbus.som.cwru.edu/~glenn/mush/tech.html

This is very detailed documentation, with graphical diagrams, of the web2mush interface.

It includes diagrams of how TinyMUSH and the WWW work, and explains the interface

web2mush provides between them. It also points to TinyCWRU (http://

nimbus.som.cwru.edu/~glenn/mush/TinyCWRU.html), Which is a WWW-based MUSH. It uses

hyperlinks for navigation.

mmMOO
http: //ww.peg.apc.org/~firehorse/mmm/mmm. html

This contains a lot of interesting information on MOOs. This site talks about LambdaMOO

and has a What is a MOO? section. The site, however, concentrates primarily on the

possibility of developing multimedia MOOs.

a ee) ied ae

SD Pe ekirh Wriclory
<==) - a wae Ge ae

a? 4 t= rele

viru ; 7 2 (oben,

i

Ss qT’ ‘bee

° »

oe § give -_

Theres : i ens 3

= ad =,

wiluage -p CWS dhe al Gores
=a" : lon’ Gh @

APPENDIX

This appendix familiarize you with terms that you probably will

encounter while MUDding.

Acronyms
Typing takes a lot of work and MUDders have developed a sort

of shorthand using acronyms for some words and phrases that

are used on a regular basis.

AC—Armor Class

AFK—Away from the Keyboard. The person playing is leaving

the computer for a while, perhaps to have a drink or a smoke.

BF—Boyfriend

BFD—An offensive way of saying Big Frigging Deal

BRB—Be Right Back (see AFK)

478 Appendixes
DBGDOOOOGHHHHDVOGOHGHHHHD OOOO GHOHHIDOOSSHOOVABE

BRT—Be Right There. An indicator that the character is in transit (usually used in tells

and shouts to let people know you are on your way to meet them)

BTW —By The Way

EP—Experience Points

F2F—Face to face

GF—Girlfriend

HP—Hit Points

IC—In Character; completely immersed in the virtual world and playing the MUD

persona

IHHO—In His (or Her) Humble Opinion

IMHO—In My Humble Opinion

IRL—In Real Life

LPC—The programming language used on LPMUDs, based on the C programming
language

LPMUD—Lars Pengs| Multi-User Dungeon

LOL—Laughs Out Loud

MOO—MUD, Object Oriented

MUD—Miulti-User Dungeon or Multi-User Dimension

MUF—Multi-User Forth. The programming language used on MUCKs

MUSH—Multi-User Shared Hallucination

OMW—On My Way (see BRT)

OOC— Out Of Character. Used to indicate conversation on topics outside of the MUD

PK—Player Killing

RL—Real Life

ROTEL or ROFL—Rolls on the Floor Laughing

RTFM—An offensive way of saying Read the Frigging Manual

$OC—South Of the Church

SOL—An offensive way of saying Surely Out of Luck

SP—Spell Points

WC—Weapon Class

WTE—An offensive way of saying What the Frig

Appendix B_ * MUD Glossary 479
@QGOGHSQO®OHHHHHHAOVHHHHHGHHHOOOHHSHHHH OOOH

WTG—Way To Go

XP—e Xperience Points

Smileys
Smileys have been around on the Internet for a long time. They often are used on MUDs

and by MUDders in other forms of communication (such as e-mail). The generic smiley,

for example, often is used in a comment to designate sarcasm or humor. (On the Internet,

sarcasm is not always as obvious as it may be in real life—sometimes its hard to guess what

a person means when you cannot see his or her face or other body language.)

Following are some of the basics smileys. Many people have developed their own smileys

and it also is possible to create new smileys by combining some of the ones in the

following list:

or:) Generic smiley

or :(Sad

or ;) Winking

: Kissing

iar Sticking tongue out

>.) Devilish smiley

:-D Very smiley

: Look of surprise or “oh”

8-) Wide eyed smiley

=:-) Wild haired smiley

1-9 Licking its lips smiley

B-) Smiley in sunglasses

d:-) Smiley wearing a baseball cap

Other MUD Terms
Here is a quick list of other terms that may come up in the course of MUDding that you

might want to know.

emotion—This often is used in e-mail and off-MUD conversation (talks, IRC, and so

on) to portray a MUD emotion, such as *smile*

areas—On many MUDs, a specific wizard or group of wizards is responsible for

maintaining and developing a region of the MUD. This region is called the wizard’s area.

bug—A general computer term for a problem in a piece of software. There are bugs in

MUDs just like in any software. Some bugs may be beneficial to players, others may be

harmful. If you find a bug, you should report it to a wizard.

immortal—A wizard

480 Appendixes
1D QOGHHGHGHOHHHHI9VHVHHHHHDVDOISOGHOHDIVWOOSPOODDVOVOOOL

lag—Noticeable delays when the machine or Internet connection the MUD is on begins

to slow

link death—When your character is moved to a special room and held in storage with

all of his or her items because your MUD connection (through telnet) dies through no

fault of your own

maving—Accidently sending a private message to everyone (that is, mistyping a tell or

page command so that it is sent to everyone in the room)

mortal—A player that can die (usually means not a wizard)

MUD sex—tThe act of having sexual relations on a MUD

MUDname—tThe pseudonym one uses on a MUD

newbie—A new MUD user

reboot—An impending reset of the MUD. This often means that you will lose all your
equipment.

spamming—To send a large amount of data (usually via say or tell) to annoy other
players or cause their connection to fail

spoofing—Sending fake say or tell messages so that they appear to be from someone else

TinySex—Term used on some MUSHes, MUCKs, and MOOs rather than the term “MUD

sex”

wimpy—The setting in your character that controls when it will run from a fight

wiz—tThe act of becoming a wizard

APPENDIX

MUD CLIENTS AND
WHERE TO FIND THEI

The following list comes from the MUD FAQ, or list of frequently

asked questions. This informational posting is maintained by

Jennifer Smith (jds@math.okstate.edu) and is widely circulated

on the Internet. The most current version can be retrieved via

FTP from ftp.math.okstate.edu:/pub/muds/misc/mud-fag, and

frequently is posted to MUD-related newsgroups. This list has

the names and short descriptions of nearly all available client

programs, as well as their standard FTP distribution sites.

482 Appendixes
G9DQDQOGOHHHHHDVOGHHHHHHD BQGOGHHHGHHDIVOVIGHGOOS

UNIX Clients

Client:

Comments:

Address:

Client:

Comments:

Address:

Client:

Comments:

Address:

Client:

Comments:

Address:

Client:

Comments:

Address:

Client:

Comments:

Address:

TinyTalk

Runs on BSD or SysV. Latest version is 1.1.7GEW. Designed primarily for

TinyMUD-style MUDs. Features include line editing, command history,

highlighting (whispers, pages, and users), gag, auto-login, simple macros,

logging, and cyberportals.

ftp.math.okstate.edu:/pub/muds/clients/UnixClients

parcftp.xerox.com: /pub/MOO/clients

ftp.tcp.com: /pub/mud/Clients

TinyFugue

Runs on BSD or SysV. Latest version is 3.2beta4. Commonly known as TF.

Designed primarily for TinyMUD-style muds, although will run on

LPMUDs and Dikus. Features include regexp highlights and gags, auto-

login, macros, line editing, screen mode, triggers, cyberportals, logging,

file and command uploading, shells, and multiple connects.

ftp.math.okstate.edu: /pub/muds/clients/UnixClients/tf

ftp.tcp.com:/pub/mud/Clients

Tels

Runs on BSD. Latest version is 0.9. Designed primarily for TinyMUD-style

MUDs. Features include regexp highlights, regexp gags, logging, auto-

login, partial file uploading, triggers, and programmability.

ftp.white.toronto.edu: /pub/muds/tcltt

ftp.math.okstate.edu: /pub/muds/clients/UnixClients

VT

Runs on BSD or SysV. Latest version is 2.15. Must have vt102 capabilities.

Usable for all types of MUDs. Features include a C-like extension language

(VTC) and a simple windowing system.

ftp.math.okstate.edu:/pub/muds/clients/vt

ftp.tcp.com:/pub/mud/Clients

LPTalk

Runs on BSD or SysV. Latest version is 1.2.1. Designed primarily for

LPMUDs. Features include highlighting, gags, auto-login, simple macros,
logging.

ftp.math.okstate.edu:/pub/muds/clients/unixclients

SayWat

Runs on BSD. Latest version is 0.30beta. Designed primarily for TinyMUD-
style MUDs. Features include regexp highlights, regexp gags, macros,
triggers, logging, cyberportals, rudimentary xterm support, command line
history, multiple connects, and file uploading.

ftp.math.okstate.edu: /pub/muds/clients/UnixClients

SOS OESSS® SDS OSG GS OSQISO9G9H G9 GOH 9HHHHSHOOOH OOHSOHOOOOHOOE

Appendix C ¢ MUD Clients and Where to Find Them

Client: PMF

Comments: Runs on BSD. Latest version is 1.13.1. Usable for both LPMUDs and

TinyMUD-style MUDs. Features include line editing, auto-login, macros,

triggers, gags, logging, file uploads, an X-window interface, and capability
to do Sparc sounds.

Address: ftp.lysator.liu.se:/pub/1lpmud/clients

ftp.math.okstate.edu: /pub/muds/clients/UnixClients

Client: Tintin

Comments: Runs on BSD. Latest version is 2.0. Designed primarily for Dikus. Features

include macros, triggers, tick-counter features, and multiple connects.

Address: ftp.math.okstate.edu: /pub/muds/clients/UnixClients

Client: Tintin++

Comments: Runs on BSD or SysV. Latest version is 1.5pl5. Derived and improved from

Tintin. Additional features include variables, faster triggers, and a split-

screen mode.

Address: ftp.princeton.edu: /pub/tintin++/dist

ftp.math.okstate.edu: /pub/muds/clients/UnixClients

Client: TUsh

Comments: Runs on BSD or SysV. Latest version is 1.74. Features include highlighting,
triggers, aliasing, history buffer, and screen mode.

Address: ftp.math.okstate.edu: /pub/muds/clients/UnixClients

Client: LPmudr

Comments: Runs on BSD or SysV. Latest version is 2.7. Designed primarily for

LPMUDs. Features include line editing, command history, auto-login, and

logging.

Address: ftp.math.okstate.edu: /pub/muds/clients/UnixClients

EMACs Clients
Client: MUD.el

Comments: Runs on GNU Emacs. Usable for TinyMUD-style muds, LPMUDs, and

MOOs. Features include auto-login, macros, logging, cyberportals, screen

mode, and it is programmable.

Address: parcftp.xerox.com: /pub/MOO/clients

ftp.math.okstate.edu: /pub/muds/clients/UnixClients

Client: TinyTalk.el

Comments: Runs on GNU Emacs. Latest version is 0.5. Designed primarily for

TinyMUD-style muds. Features include auto-login, macros, logging, screen

mode, and it is programmable.

Address: ftp.tcp.com(128.95.10.106) :/pub/mud/Clients

ftp.math.okstate.edu: /pub/muds/clients/UnixClients

483

Appendixes

DDDOOOGGHHHGHD WWI GHHHOHHOHD GOVVOOHSIVDHVSOW

Client:

Comments:

Address:

Client:

Comments:

Address:

Client:

Comments:

Address:

VMS Clients

Client:

Comments:

Address:

Client:

Comments:

Address:

Client:

Comments:

Address:

Client:

Comments:

Address:

LPmud.el

Runs on GNU Emacs. Designed primarily for LPMUDs. Features include

macros, triggers, file uploading, logging, screen mode, and it is program-

mable.

ftp.lysator.liu.se:/pub/lpmud/clients

ftp.math.okstate.edu: /pub/muds/clients/UnixClients

CLPmud.el

Runs on GNU Emacs. Designed primarily for LPMUDs. Similar to

LPmud.el, but with the added capability for remote file retrieval, editing

in emacs, and saving, for LPMud wizards.

mizar.docs.uu.se:/pub/1lpmud

MyMud.el

Runs on GNU Emacs. Latest version is 1.31. Designed primarily for

LPMUDs and Dikus. Features include screen mode, auto-login, macros,

triggers, auto-navigator, and it is programmable.

ftp.math.okstate.edu: /pub/muds/clients/UnixClients

ftp.tcp.com:/pub/mud/Clients

tfVMS

VMS version of TinyFugue (see above). Uses Wollongong networking.

Latest version is 1.0b2.

ftp.math.okstate.edu: /pub/muds/clients/VMSClients

TINT

Runs on VMS with MultiNet networking. Latest version is 2.2. Designed

primarily for TinyMUD-style MUDs. Features include highlighting (whis-

pers, pages, users), gags, file uploading, simple macros, and screen mode.

See also TINTw.

ftp.math.okstate.edu: /pub/muds/clients/VMSClients

TINTw

Runs on VMS with Wollongong networking. See TINT.

ftp.math.okstate.edu: /pub/muds/clients/VMSClients

ftp.tcp.com:/pub/mud/Clients

DINK

Runs on VMS with either Wollongong or MultiNet networking. Similar to
TINT. No longer supported by the author.

ftp.math.okstate.edu: /pub/muds/clients/VMSClients

ftp.tcp.com:/pub/mud/Clients

Client:

Comments:

Address:

Appendix C © MUD Clients and Where to Find Them

FooTalk

Runs on VMS with MultiNet networking and BSD UNIX. Primarily

designed for TinyMUD-style MUDs. Features include screen mode, and it

is programmable.

ftp.math.okstate.edu: /pub/muds/clients/VMSClients

ftp.math.okstate.edu: /pub/muds/clients/UnixClients

WinSock Clients (for Microsoft Windows)
Client:

Comments:

Address:

Client:

Comments:

Address:

Clients:

Comments:

Address:

Client:

Comments:

Address:

Client:

Comments:

Address:

Other Clients

Client:

Comments:

Address:

WinMud

Runs on MS Windows using WinSock. Primarily designed for LPs and

DikuMUDs. Features include simple macros.

ftp.cybernetics.net:/pub/users/lymang

VWMud

Runs on MS Windows using WinSock. Features include macros and
triggers.

ftp.primenet.com: /pub/users/kslewin

WinWorld

Runs on MS Windows using WinSock.

ftp.mgl.ca:/pub/winworld

MUTT

Runs on MS Windows using WinSock. Latest version is 01i. Name stands

for Multi-User Trivial Terminal. Features include scripting, multiple

connects, triggers, macros, logging, and so on.

caisr2.cwru.edu: /pub/mud

ftp.graphcomp.com: /pub/msw/mutt

MudWin

Runs on MS Windows using WinSock. Features include command history,

simple macros, and logging.

ftp.microserve.com: /pub/msdos/winsock

REXXTALK

Runs on IBM VM. Latest version is 2.1. Designed primarily for TinyMUD-

style MUDs. Features include screen mode, logging, macros, triggers,

highlights, gags, and auto-login. Allows some IBM VM programs, such as

TELL and MAIL, to be run while connected to a foreign host.

ftp.math.okstate.edu: /pub/muds/clients/misc

485
OS OGGOBEOIOSSSSSS OG GOS 999GS90 G9 SS 8 9G9G9S990890O89S90000800E

486 Appendixes

BDOQOGHHHGHHDH OOOOH HHGHDD BQGOPDHHS GB VSP OIGDBQVSVIVIGIGVSO®

Client: MUDDweller

Comments: Runs on any Macintosh. Latest version is 1.2. Connects to a MUD through

either the communications toolbox or by MacTCP. Usable for both

LPMUDs and TinyMUD-style MUDs. Current features include multiple

connections, a command history, and a built-in MTP client for LPMUDs.

Address: rudolf.ethz.ch:/pub/mud

mac.archive.umich.edu: /mac/util/comm

ftp.tcp.com: /pub/mud/Clients

Client: Mudling

Comments: Runs on any Macintosh. Latest version is 0.9b26. Features include mul-

tiple connections, triggers, macros, command line history, separate input

and output windows, and a rudimentary mapping system.

Address: imv.aau.dk:/pub/Mudling

ftp.math.okstate.edu: /pub/muds/clients/misc

Client: MUD Caller

Comments: Runs under MS-DOS. Latest version is 2.50. Requires an Ethernet card, and

uses the Crynwr Packet drivers. Does NOT work with a modem. (If you

telnet in MS-DOS, you can probably use this.) Features include multiple

connections, triggers, command-line history, scrollback, logging, macros,

and separate input and output windows.

Address: ftp.tcp.com: /pub/mud/Clients

ftp.math.okstate.edu:/pub/muds/clients/misc

oak.oakland.edu: /pub/msdos/pktdrvr

BSXMUD Clients
These clients run on various platforms, and enable the user to be able to see the graphics

produced by BSXMUDs. BSXMUDs generally are LPMUDs (but not necessarily) that have

been hacked to allow the sending of polygon graphics coordinates to BSXclients, thus

enabling you to play a graphic MUD rather than just a text-based MUD.

Comments:

Address:

For Amiga: Modem or TCP/IP (AmigaBSxClient2_2.1ha)

For PC: Requires a modem (msclient.1zh AND x00v124.zip)

For X11: Sources, version 3.2 (bsxclient3_8c.tar.Z)

For Sun4: Binary (client.sparc.tar.Z)

Also available are programs to custom draw your own graphics for a

BSXMUD (muddraw.tar.gz, bsxdraw.zoo)

ftp.lysator.liu.se:pub/1lpmud/bsx

ftp.math.okstate.edu: /pub/muds/BSXstuff

APPENDIX

AVAILABLE SERVERS

There are many MUD servers available. While it is beyond the

scope of this book to discuss them all, it might be of interest to

you to find out what the different servers are. The following list,

compiled by Jennifer Smith, is from the MUD FAQ and shows a

comprehensive list of known MUD servers, a brief description of

each, and an FTP site where each can be found.

458 Appendixes
3S SSS S0SS99S9 99989959999 SSSSSS999SSS9SSS9S999S99S899985

MUD FAQ Note

Just because we say something’s available doesn’t mean we have it. Please don’t ask us;

ask around for FTP sites that might have it, or try looking on ftp.tcp.com or

ftp.math.okstate.edu.

Combat-Oriented MUDs

Server:

Comments:

Server:

Comments:

Address:

Server:

Comments:

MUD

The origina!, by Richard Bartle and Roy Trubshaw, written back in 1978.

An advanced version of MUD2 is now running on CompuServe under the

name of “British Legends.” A few MUD2s can still be found running here

and there. The three known ones are portal. aladdin.co.uk, craic.iol.ie,

and Iplay Online at 199.182.210.2. Source generally not available.

AberMUD

One of the first adventure-based MUDs. Players cannot build. In later

versions, a Class system was added, and wizards can build onto the data-

base. It’s named after the university at which it was written, Aberystwyth.

Latest version is 5.21.5. Supports all the usual in combat game design,

including BSX graphics and MUDWHO. Not too big, and it will run under
BSD and SYSV. Amiga TCP/IP support now included.

A.Cox@swan.ac.uk.

sunacm.swan.ac.uk:/pub/misc/AberMUD5/SOURCE

LPMUD

The most popular combat-oriented MUD. Players cannot build. Be

warned, though: LPMUD servers version 3.* themselves are very generic—
all of the universe rules and so forth are written in a separate module,
called the MUDIlib. Most LPMUDs running are written to be some sort of
combat system, which is why I’ve classified them here, but they don’t
have to be! Wizards can build onto the database, by means of an object-
oriented C-like internal language called LP-C. It’s named after its primary
author, Lars Pensj;. Latest version is 3.2, AKA Amylaar. Fairly stable, and
size varies from medium to large. Driver (server) versions seem to have
split into several main variants, not counting possible MUDlibs (data-
bases) available. Amylaar, CD, and MUDOS are the current favorites. For
further information, e-mail to amylaar@meolyon.hanse.de.

There is a port of 3.1.2 for Amigas, called aMUD, now included in LPMUD
v3.2. For further information, e-mail to mateese@ibr.cs.tu-bs.de. See the
rec.games.MUD.1p FAQ for more info.

Address:

Address:

Server:

Comments:

Address:

Server:

Comments:

Address:

Server:

Comments:

Address:

Server:

Comments:

Address:

Server:

Comments:

Address:

Appendix D ¢ Available Servers 489
GODBOSG9OVSOSS 9S 8 GOS SS OS 0G 9 99SS09090G88000'

ftp.lysator.liu.se:/pub/1pMUD

ftp.cd.chalmers.se:/pub/1pMUD/cdlib

ftp.tu-bs.de:/pub/games/1pMUD

ftp.ccs.neu.edu: /pub/MUD/drivers/MUDos

There is a port of 3.1.2 for MSDOS, that requires at least a 386 to run. It

accepts connections from serial ports.

ftp.ccs.neu.edu: /pub/MUD/drivers/1pMUD/msdos

DGD

Written by Felix Croes. A reimplementation from scratch of the LPMUD

server. It is disk-based, and thus uses less memory. It’s also smaller and

lacks many of the features of the other LPMUD servers, though it is

capable of simulating most of those features in LPC. Many DGDs are

simulating an LP, but there are several MUDs that now use DGD to

simulate a MOO variant. The name stands for Dworkin’s Generic Driver.

Stable. Has been ported to Atari ST and Commodore Amiga.

ftp.lysator.liu.se:/pub/1pMUD/drivers/dgd

DikuMUD

Newer than LPMUD, and gaining in popularity. Almost identical from the

players’ point of view. Uses a guild system instead of a straight class

system. Wizards can add on to the database, but there is no programming

language, as in LP. It’s named after the university at which it was written,

Datalogisk Institut Koebenhavns Universitet (Dept. of Datalogy, Univer-

sity of Copenhagen).

coyote.cs.wmich.edu: /pub/Games/DikuMUD

YAMA

PC MUD writing system, using waterloo wattcp. Runs on a 640Kb PC/XT

or better. Runs best with about a 1Mb RAM disk, but is fine without. A

separate Windows version (yamaw) runs under Windows and allows you

to run a MUD on a 286 or higher without taking over the machine.

sunacm.swan.ac.uk:/pub/misc/YAMA

UriMUD

Developed from an LPMUD2.4.5, the code structure is very similar.

Features include better speed, flexibility, stronger LPC, and the ability to

handle multiple MUDlibs under one parser. Latest version is 2.5.

uriMUD.isp.net: /uriMUD/src

Ogham

From the players’ point of view, similar to LPMUD. No programming

language or database, as MUD compiles to a single binary executable.

Latest version is 1.5.

ftp.ccs.neu.edu: /pub/MUD/servers/ogham

ftp.math.okstate.edu:/pub/MUDs/servers

490 Appendixes
GOO O99SGH9GG8 99905 H459099 9989S 9559S 9SS9 9909999 BS 8S99S0%

Server:

Comments:

Address:

Server:

Comments:

Address:

CircleMUD :

Derivative of DikuMUD Gamma v0.0. Developed by Jeremy Elson

(jelson@cs. jhu.edu). Less buggy and tighter code all in all. Latest version is

2.20. Also see URL http: //ww.cs.jhu.edu/other/jelson/circle.html

ftp.cs.jhu.edu: /pub/CircleMUD

sunsite.unc.edu: /pub/Linux/games/MUDs

ftp.math.okstate.edu:/pub/MUDs/servers

AmigaMUD

Written from scratch for Commodore Amiga computers. Includes custom

client which supports graphics and sound. Disk-based, fast programming

language, standard scenario including built-in mail and bboards. Ob-

tained from the Aminet FTP sites.

ftp.wustl.edu:/pub/aminet/game/role/AMClnt.lha, AMSrv.lha

TinyMUD-Style MUDs
Server:

Comments:

Address:

Address:

Address:

Server:

Comments:

Address:

TinyMUD

The first, and archetypical, socially-oriented MUD. It was inspired by and

looks like the old VMS game Monster, by Rich Skrenta. Players can explore

and build, with the basic @dig, @create, @open, @link, @unlink, and @lock

commands. Players cannot teleport, and couldn’t use @chown or set things

DARK until later versions. Recycling didn’t exist till the later versions,

either. It’s called “Tiny” because it is—compared to the combat-oriented

MUDs. Original code written by Jim Aspnes. Last known version is 1.5.5.
Not terribly big, and quite stable.

ftp.math.okstate.edu: /pub/MUDs/servers

primerd.prime.com: /pub/games/MUD/tinyMUD

There is a PC port of TinyMUD, along with some extra code. It accepts
connections from serial ports.

ftp.tcp.com: /pub/MUD/TinyMUD

There is a modified version of TinyMUD called PRISM, that works for PCs,
Atari STs, and most UNIXes. It also comes with an internal BSX client for
MS-DOS.

lister.cc.ic.ac.uk:/pub/prism

TinyMUCK v1.*

The first derivative from TinyMUD. Identical to TinyMUD, except that it
added the concept of moveable exits, called @actions. Also introduced the
JumP_OK flag, which allows players to use @teleport, and @recycle, which
TinyMUD later added. Its name, MUCK, is derived from MUD, and means
nothing in particular. Original code written by Stephen White. Latest
stable version is 1.2.c&r, which brought TinyMUCKv1 up to date with
later TinyMUD things. Not terribly big.

ftp.math.okstate.edu: /pub/MUDs/servers

Server:

Comments:

Address:

Server:

Comments:

Address:

Server:

Comments:

Address:

Appendix D ¢ Available Servers 491
BDOOGSG GHOSS GOS OSS 9OSSGS GG O49 9 GOOGS9SSH 0900 99SS90GSS008000E

TinyMUSH

The second derivative from TinyMUD. Also identical to TinyMUD, with

the addition of a very primitive script-like language. Introduced yumP_oK

like TinyMUCK, and has recycling, except it is called edestroy. Also

introduced the concept of puppets, and other objects that can listen. In

later versions the script language was extended greatly, adding math

functions and many database functions. In the latest version, 2.0.*, it’s

gone to a disk-basing system as well. Its name, MUSH, stands for Multi-

User Shared Hallucination. Original code written by Larry Foard. The

latest non-disk-based version is PennMUSH1.50p10g5, which is quite

similar to 2.0 from the user’s point of view. Both the disk-based version

and the non-disk-based version are being developed at the same time

(PennMUSH is now being developed under the name PennMUSH-Dune).

TinyMUSH is more efficient in some ways than TinyMUD, but winds up

being larger because of programmed objects. Version 2.0 generally uses

less memory but a great deal more disk space. 2.0 may also be able to be

run under VMS, as well as both BSD and SysV UNIX. Most recent version

is 2.0.10p6.

caisr2.caisr.cwru.edu:/pub/mush

mellers1.psych.berkeley.edu: /pub/DuneMUSH/ Source

ftp.cis.upenn.edu: /pub/lwl

primerd.prime.com: /pub/games/MUD/tinymush

ftp.tcp.com: /pub/MUD/TinyMUSH

TinyMUCK v2.*

TinyMUCKv1.* with a programming language added. The language, MUF

(multiple user FORTH), is only accessible to people with the mucker flag.

Changed the rules of the uumP_ok flag somewhat, to where it’s nice and

confusing now. MUF is very powerful, and can do just about anything a

wizard can. Original version 2.* code written by Lachesis. Latest version is

2.3b, with several varieties (FRBMUCK and DaemonMUCK 0.14 the most

common). The name doesn’t mean anything. Can be quite large, espe-

cially with many programs. Mostly stable.

ftp.tcp.com: /pub/MUD/TinyMUCK

TinyMUSE

A derivative of TinyMUSH. Many more script-language extensions and

flags. Reintroduced a class system, a la combat-oriented MUDs. The name

stands for Multi-User Simulation Environment. Latest version is 1.7b4.

Not very stable.

mcmuse.mc.maricopa.edu: /muse/server

caisr2.caisr.cwru.edu: /pub/mush/muse

492 Appendixes
1BBBHOOOHHOHHHHHOODHOHHHID I VOPDGHOPDIIS VOD OPHGHOIVHVHL

Server: TinyMAGE

Comments: The bastard son of TinyMUSH and TinyMUCK. It combines some of

MUSH’s concepts (such as puppets, @adesc/@asucc, several programming

functions, and a few flags) with TinyMUCK2.x. Interesting idea; really

busted code. The name doesn’t mean anything. Latest version is 1.1.2.

Address: ftp.tcp.com: /pub/MUD/TinyMAGE

Server: MUG

Comments: Derivative of TinyMUD 1.4.1. It’s name stands for Multi-User Game.

Powerful but awkward programming language, which is an extension of

the user language; primitive notion of puppets; inheritance; sane

variable/property matching; arrays and dictionaries in hardcode. Some-

what non-standard and buggy in a few places. Requires gcc.2.4.5 or

greater (or other good C++ compiler) to compile.

Address: Available by e-mail from wizard@cs.man.ac.uk;

Development site is UglyMUG (wyrm.cs.man.ac.uk 6239)

Server: TeenyMUD

Comments: A TinyMUD clone, written from scratch. Its main feature is that it is disk-

based. Original code written by Andrew Molitor. Latest version is 1.3. Very

small, and mostly stable.

Address: fido.econ.arizona.edu: /pub/teeny

Miscellaneous
Server: UberMUD

Comments: The first MUD where the universe rules are written totally in the internal

programming language, U. The language is very C/Pascal-like. The permis-

sions system is tricky, and writing up every universe rule (commands and

all) without having big security holes is a pain. But it’s one of the most

flexible MUDs in existence. Great for writing up neat toys. It’s also disk-

based. Original code written by Marcus J. Ranum. Latest version is 1.13.

Small in memory, but can eat up disk space. Quite stable.

Address: decuac.dec.com: /pub/MUD

ftp.white.toronto.edu: /pub/MUDs/uber

ftp.math.okstate.edu:/pub/MUDs/servers

Server: MOO

Comments: An Object-Oriented MUD. Unfortunately, the first few versions weren’t
fully object-oriented. Later versions fixed that problem. There is a C-like
internal programming language, and it can be a bit tricky. Original code
written by Stephen White. Last version is 2.0a.

Address: No Known Site

Appendix D ¢ Available Servers 493
2QOOVSSOOHGHHQOYVHOSHHOHOOOHHHGHHOHGHHOOVHGHDOOHGHHOOOHSO

Server: LambdaMOO

Comments: An offshoot of MOO. Added more functionality, many new features, and

a great deal more stability, in a general rewrite of the code. This is the

only version of MOO that is still being developed, by Pavel Curtis. Latest
version is 1.7.8p3.

Address: parcftp.xerox.com: /pub/MOO

Server: SMUG

Comments: Also known as TinyMUD v2.0. It has an internal programming language,

and it does have some inheritance. Surprisingly similar to MOO in some

ways. SMUG stands for Small Multi-User Game. Original code written by

Jim Aspnes.

Address: ftp.tcp.com: /pub/MUD/Smug

Server: UntermMUD

Comments: A network-oriented MUD. It’s disk-based, with a variety of db layers to

choose from. An UnterMUD can connect directly to other UnterMUDs,

and players can carry stuff with them when they tour the Unterverse. This

can be a bit baffling to a new user, admittedly, but those people already

familiar with the old cyberportals and how they work (invented way back

with the original TinyMUD) will adjust to the new, real, cyberportals

easily. There is both a primitive scripting language and much of the U

language from UberMUD built in, as well as a combat system that can be

compiled in if wanted. The parsing can be a bit odd, especially if you’re

used to the TinyMUD-style parser. Unter is also the only MUD that can

run under BSD UNIX, SysVr4 UNIX, and VMS with MultiNet networking,

with little to no hacking. Original code written by Marcus J. Ranum.

Latest version is 2.1. Small in memory, but can eat up a lot of disk space.

Address: ftp.math.okstate.edu: /pub/MUDs/servers

decuac.dec.com: /pub/MUD

ftp.tcp.com:pub/MUD/UnterMUD

Seal asic php ibid pete
ig nah © ott : Niney stl? Law Oi il Selle

bey mae + otHY MSR nT sft ah Some
On mie Mach J ——

— a Er 88 _ sae a

INDEX

SYMBOLS
() (parentheses), 249

* (asterisk) wildcard

characters, 398

; (semicolon), 249

@@ command, 408

@ commands (MUCK/MUSB),

374-375, 408-420

{} (braces), 248-249, 399

5th Dimension, 436

A
@aahear command, 398, 408

AberMUD, 488

@abort command, 331-332

abs() function, 420

academic papers concerning

MUDs, 473-474

Acer Isle Virtual World, 436

@aclone command, 408

@aconnect command, 408

acos() function, 420

act command, 82

#action command (Tintin++),

189-190

action lists (MUCK/MUSH), 375

ADAMANT, 437

add() function, 420

add_action() function, 256

add_verb() function, 256

add_xverb() function, 256-257

@addfeature command, 110

addictiveness of MUDs, 5, 8-9

adding text to MOO objects,

328-329

@addroom command, 109

/addworld command

(TinyFugue), 201

@adescribe command, 408

@adfail command, 408

@adisconnect command, 408

admin (wizard level), 210

administrative issues

of MUDs, 468

@adrop command, 375,

388, 408

advance command, 131

Advanced Dungeons & Dragons

Player’s Handbook, 37

advancing (levels), 131-132

Adventurers’ Guild, 40

@aefail command, 408

@aenter command, 408

@afail command, 377, 389, 408

After Five, 437

after() function

after() function, 420

Age of Legends, 437

@agfail command, 408

@ahear command,

397-398, 408

@akill command, 409

AlatiaMUD, 437

Albanian, 437

@aleave command, 409

AlexMUD, 437

@alfail command, 409

#alias command

(Tintin++), 188-189

@alias command, 409

alias command, 159-160

aliases, 17, 180,

188-189, 313

alignment, 39, 45

all inventory()

function, 257

allocate() function, 257

Almost-Complete List of

MUSHes (World Wide

Web), 472

alter egos, see

characters

Altered Dimensions

MUSH 2, 437

Amber Diceless Role-

Playing Game, 104,

437, 456

@amhear command,

398, 409

AmigaMUD, 490

@amove command, 409

amulets (armor

types), 299

Ancient Anguish, 438

and() function, 421

Angalon, 438

AngrealMOO, 438

Anime MUCK, 438

announce com-

mand, 339

@apay command, 409

Apex, 438

@ Omoad <2) 'BSSOOSSSSSSSS9 SSSSSS9SS9999005

Apocalypse IV, 438

aposs() function, 421

apprentice wizards,

219-220

commands, 220-238

creating castles, 238-306

aragon.uio.no WWW

Server for MUD Infor-

mation, 471

arbitration command,

re hw

Architecture Review

Board (MOO), 7

Arctic, 438

@arfail command, 409

argument specifiers

prepositions, 349

verbs (MOO), 318-320,

324-325, 341

arithmetic operators

(MOO), 358

armor class (AC), 126,

128-129, 477

armor/weapons

buying, 139-141, 174

combat MUDs, 28-29

DikuMUDs, 137-141,

169-170

enhancements, 164-165

magical bonuses, 165

programming MUDs,

299-301

renting, 170

saving, 170

upgrading, 176

wear command, 29

armor class, 299

arrays, 244-245, 255

asin() function, 421

assassins, 168

assignment statements

(MOO), 357

@asuccess command,

377, 388, 409

atan() function, 421

@atfail command, 409

atoi() function, 257

@atport command, 409

attributes, 375, 388-390,

393-394, 400

auction command,

87,171

@audit command, 367

@aufail command, 409

Aurora, 438

@ause command, 409

AustinMUD, 439

auto-loading

objects, 278

auto-login, 202

automation/triggers,

181, 189-190, 194,

201-202

@away command, 410

backstab command,

40, 168

backtrace (debug verb

permission), 352

bandage command, 150

Bard Guild, 40

Barren Realms, 439

base statistics, 36

BatMUD, 439

BayMOO, 439

Belior Rising, 439

BioMOO, 474

bitfields, 289

blake command, 112

Bloodletting: Dublin by

Night, 439

Blue Facial MUD, 439

blush command, 112

Boo MOO, 440

booting guests, 72

boots (armor types), 299

bow command, 112

braces ({}), 248-249, 399

Brazilian Dreams, 440

break; statements, 252

break_string() func-

tion, 257-258

brief command, 136

BSXMUD client pro-

grams, 486

bugs (programming

MUDs), 304-305, 479

$builder player class

(MOO), 311

built-in properties

(MOO), 348

bulletin boards, 123-124

burn command, 326

buy command, 124, 140

buying objects, 122,

139-141, 174

C
cackle command, 112

call_other() func-

tion, 258

call_out() function, 258

call_out_info() func-

tion, 259

caller() function, 259

Camelot MUSH, 440

can_put_and_get()

function, 259

capitalize() func-

tion, 260

capstr() function, 421

capturing conversa-

tions, 78

Cardiff’s MUD Page

(World Wide

Web), 471

carrying objects, 137

Castle D’Image, 440

castles, creating,

238-306

cat command, 226

cat() function, 260, 421

catch() function, 260

catch_tell() func-

tion, 261

CaveMUCK, 440

cd command, 226-227

ceil() function, 421

center() function, 421

#char command

(Tintin++), 186

characters, 31-48

adding descriptions,

64, 73

alignment, 45

attributes, 160-162

compared to players, 31,

34-35

corpses, 46

creating, 57, 67-68,

116-117

damroll, 164-165

death, 45-46, 150

DikuMUDs, 161-162,

173-177

dwarf, 161

elf, 161

fatigue, 144, 156-157

forming allies, 176

gender, 73, 380

ghosts, 46

grouping, 172-173, 175

guests, 55, 68

guilds, 40-44, 64,

165-169

healing/health, 122,

143-144

hit points, 163

hitroll, 164

human, 161

IC (In Character), 35

link death, 480

mana points, 163

marriage on MUDs, 94

movement points,

163-164

multiple guild charac-

ters, 169

partying, 176-177

player killing, 47-48

practicing skills/spells,

141-142, 162, 174

races, 44-45, 63, 160-161

497 client programs

SSOSSSSSSSOS G08 8 9SSS86G60008000l

regenerating, 164

resurrection, 46

selecting MUDnames,

32-33

sex on MUDs, 95-100

Statistics, 35-39, 59

teleporting, 108

training, 141-142

@charges command, 410

charisma (statis-

tics), 162

chat command, 87, 171

Chiba Sprawl MOO,

111-112, 440

child object class

(MOO), 309

Children of the

Atom, 440

@chmod command,

348, 350

Chomestoru, 440

@chown command,

348, 410

@chparent command,

311, 333

chuckle command, 112

churches, 60, 120

CircleMUD, 436, 490

CircleMUD Home Page

(World Wide

Web), 473

City of Darkness, 441

clan systems

(DikuMUDs), 175-176

classes, see guilds;

object classes; player

classes

clear properties, 347

clear_bit() fuunc-

tion, 261

@clearproperty com-

mand, 347

cleric guilds, 168-169

client programs, 160,

177, 179-202, 485-486

auto-login, 202

automation/triggers,

131, 202

498 client programs
DDOEOHHHHHH9 GO HO0HGHHSS 8 9909S HH O9 BBOVSS99S9S9 290908

BSXMUD clients, 486

compiling, 184-185

configuring/installing,

182-184

cyberportals, 202

EMACs clients, 483-484

logging to files, 95, 202

macros, 202

manipulating text,

181-182, 202

MOO clients,

309-310, 332

MUDDweller, 194-200

screen control

options, 182

screen customization

(Tintin++), 190-192

screen mode, 202

server-client soft-

ware, 215

system requirements,

182-183

telnet, 179

Tintin++, 184-194

TinyFugue, 200-201

UNIX clients, 482-483

VMS clients, 484-485

WinSock clients, 485

@clone command, 410

clone command,

233-234

clone_object() fuunc-

tion, 261

CLPmud.el client

program, 484

coding, see program-

ming

combat, initiating, 126

combat MUDs, 5-6, 8,

115-132

alternatives, 117-118

armor, 28-29, 139-141

armor class (AC),

128-129

compared to social

MUDs, 103

concluding combat,

147-150

damage levels on

players/monsters, 20,

129-130

death, 130

DikuMUDs, 5, 133-177

fleeing combat, 148

initiating combat,

145-146

issuing commands

during combat,

146-147

killing monsters, 127

LPMUDs, 5, 118-132

monsters, 126-127

MOOs, 116-117

mortal wounds, 150

MUSHes, 5, 116-117

partying, 130

role-playing, 35-48

rounds, 129-130

selecting wizards,

210-212

servers, 488-490

weapon class (WC), 128

weapons, 28-29, 139-141

wizards, 206

comfort command, 112

command character

(Tintin++), 186

command queue, 403

command() func-

tion, 261

$command utils

(MOO), 363

commands

apprentice wizard

commands, 221-226,

233-235

@commands (MUCK/

MUSH), 374-375,

408-420

communications com-

mands, 81-89, 170-172

emotion commands

(MOO), 111-113

fatigue commands

(DikuMUDs), 156-157

issuing commands

during combat,

146-147

macro commands

(MUDDweller), 199-200

object-defined com-

mands, 17

proprietary commands

(MOO), 110
social commands

(DikuMUDs), 155-156

Tintin++ com-

mands, 185-194

TinyFugue com-

mands, 201

user-defined commands,

399-400

comments (program-

ming MUDs), 241-242

Communication dialog

box (MUDDweller), 196

communication

forums

Internet, 4

client programs,

179-202

protocols, 49-53

types of MUDs, 435-468

World Wide Web,

469-475

communications com-

mands, 81-89, 170-172

comp() function, 421

comparison operators

(MOO), 358

compile command, 331

compiling, 184-185, 239

con() function, 421

concatenating strings

(MOO), 359

conditional expressions,
192, 359

configuring/installing

client programs,

182-184, 195-196

conn() function, 421

connecting rooms, 382
connections

(MUDDweller), 195

consider command, 145

Conspiracy, 441

constitution, 37, 59,

162-163

$container, 311

containers, creating,

301-302, 364-366,

393-394

@contents com-

mand, 356

continue; state-

ments, 252

control-] command

(suspend session), 54

controls() function, 421

conversations, captur-

ing, 78

convsecs() func-

tion, 421

convtime() func-

tion, 421

@copy command, 368

copying

files, 227-229

text (MOO objects), 331

core database

(MOO), 309

cores (MOO), 217

corpses, 46, 147

cos() function, 421

@cost command, 410

cp command, 227-229

cp() function, 261

Crack (application), 56

@create command, 312,

391, 410

create() function, 262

create_wizard() func-

tion, 262

creating

aliases, 180

armor, 299-301

castles, 238-306

characters, 57, 64, 67-68,

73, ADG-LAs

containers, 301-302

directories, 229

exits (MOO), 334-335

generic objects, 349-350

macros (MUDDweller),

199

monsters, 294-297

objects, 103-104, 206,

312-313, 391-394

personalities, 4

puppets, 406-407

rooms, 22, 291-295,

333-335

semaphores, 405-406

treasure, 302-303

weapons, 297-299

see also defining;

programming

creator() function, 262

cringe command, 112

Crossed Swords, 441

cry command, 112

crypt() function, 262

CrystalIMUSH, 441

ctime() function, 262

Cut and Paste (client-

based MOO

editing), 332

cyberportals, 202

CyberSphere, 441

D
DaedalusMOO, 441

damage (combat), 20,

129-130

damroll, 164-165

Danse Macabre, 441

Dark Castle, 442

Dark Gift MUSH, 24-25,

117, 210, 442

Dark Metal, 442

Dark Wind, 442

499 delete () function

229 SSOS GOOG S99GHS99SHO99SHH9HH0NGOSS9SS99990080900E

Darker Realms, 442

Darkweb, 442

database (MOO), 309

Datalogisk Institut

Koebenhavns

Universitet (Depart-

ment of Computer

Science, University of

Copenhagen) Multi-

User Dungeon, see

DikuMUD

Dawn of the Immor-

tals, 442

Dawn Sisters, 442

dbref (database refer-

ence), 374

death, 130

characters, 45-46

DikuMUDs, 150

players, 21

resurrection, 60

Death’s Domain, 443

debug permissions

(verbs), 352

debugging program-

ming code, 242

@decompile com-

mand, 410

deep_inventory()

function, 263

Deeper Trouble, 443

/def command

(TinyFugue), 201

default locks, 378

#define statement

(programming

MUDs), 253

defining

commands, 17, 399-400

exits, 22, 293, 388-390

gender of characters, 73

statistics (characters),

35-38

verbs (MOO), 335-337

see also creating

delete() function, 421

SSSSOSSSSS9S99S9S9SS9S9899

deleting

deleting

aliases, 189

directories, 232

exits, 391

files, 232

properties, 348

text (MOO objects), 329

verbs (MOO), 341-342

@describe command,

107, 314-315, 322-323,

335, 380, 382, 393, 410

describe command, 19

Desert Wings, 443

dest command, 234

@destroy command,

391, 410

destruct() function, 263

dexterity (statistics),

37, 162

@dfail command, 410

DGD (Dworkin's Game

Driver), 216, 489

@dig command,

333-334, 382-387, 410

DikuMUDs, 3, 5,

133-177, 489

advanced players’

strategy, 175-177

armor/weapons, 137-141

characters

attributes, 160-162

death, 46, 150

fatigue, 144, 156-157

grouping, 172-173

guilds, 166-169

health, 143-144

races, 63, 160-161

statistics, 161-162

strategy, 173-177

CircleMUD Home Page

(World Wide Web), 473

cleric guilds, 168-169

client programs, 160

combat experiences,

144-150

communications com-

mands, 170-172

OSOoee

concluding combat,

147-150

describe command, 19

eating food/water, 144

EliteMUD, 62-66

emotions, 82-86, 141

fighter guilds, 166

fleeing combat, 148

guilds, 64

initiating combat,

145-146

issuing commands

during combat,

146-147

locating, 133

magic-user guilds,

166-167

modifying statistics, 165

movement messages, 136

multiple guild charac-

TELS LOG

navigating, 135-136,

151-155

newbies, 173-175

player levels, 207

politics of MUDs,

175-176

prompts, 12

Realms of Magic,

134, 458

RiffRaff’s Unofficial List

of DikuMUD Home

Pages (World Wide
Web), 472

rooms, 22,24, 135-136

say command, 82

selecting wizards, 209

social commands,

155-156

speedwalking, 151

tell command, 38, 86-87

thief guilds, 167-168

Tintin++ client program,

184-194

training characters,

141-142

Usenet newsgroups, 468

user interfaces (com-

mands), 159-160

weapons/armor,

164-165, 169-170

who command, 88

DINK client pro-

gram, 484

directions (naviga-

ting), 12

directories, 226-232,

239-241

disable_commands()

function, 263

disciplining

players, 206

Discordia, 443

@display command,

324, 350, 356

display command, 159

dist2d() function, 422

dist3d() function, 422

div() function, 422

Diviniation Web, 443

doc directory, 240

@doing command, 410

@dolist command,

402-403, 411

donate command,

140-141

done command, 331

Doom MUD, 443

Doran MUD list, 468

DOS (Disk Operating

System) client pro-

grams, 182

Dragon Dawn, 443

DragonDreams, 443

DragonFire MUD, 444

DragonMUD, 444

Dragon’s Den, 444

Dragonsfire, 444

@drain command,

406, 411

DreaMOO, 444

drink command, 154

drinks, buying, 122

@drop command,

375, 411

drop command, 27,

119, 372

drop() function,

263-264

drop-to rooms, creating,

394-395

Druid Guild, 41

DruidMuck, 444

druids, 167

dwarf (races), 161

Dworkin's Game Driver

(DGD), 216, 489

e() function, 422

@ealias command, 411

earmuffs command,

221-222

EarthMUD, 444

eat command, 154

eating food/water, 144

echo command,

199, 222

echoall command,

88, 222

ed command, 235-237

Ed editor

(MUDDweller), 198

Edge of Darkness, 444

@edit command, 327,

336, 411

edit() function, 422

editing

files, 235-237

MOO object text,

327-333

@efail command, 411

efun (external func-

tions), 254, 305-306

elder wizard (wizard

level), 219

Elements of Para-

dox, 445

elf (races), 161

ElfQuest, wo

Moons, 465

EliteMUD, 24, 62-66

elock() function, 422

elseif statements

(MOO), 343

ElysiumMUSH, 445

EMACs client programs,

483-484

@emit command,

374-375, 411

emote command, 82-84,

106, 172, 329

emotion, 479

emotions, 82-86,

111-113, 141

Empire, 445

enable _commands()

function, 264

encrypt command, 326

@enter command,

393, 411

enter command, 332

enter locks, 378

@entrances command,

391, 411

Enulal, 445

environment com-

mands (apprentice

wizards), 221-225

environment() func-

tion, 264

EON, 445

eq() function, 401, 422

equipment command,

138, 158

erase command, 325

error messages, verbs

(MOO), 366-367

escape() function, 422

escapes (programming

MUDs), 253

eval command, 356-357

Everdark, 445

EWAN telnet pro-

gram, 53

501 extract () function

DOES 299999 9S OOS 9SSSHSO90999SS6E65900000008

@examine com-

mand, 355

examine command, 152,

372, 390

exec() function, 264

execute permissions

(verbs), 352

executing Tintin++

client program,

185, 194

exit() function,

264-265, 422

exiting editor

room, 331

@exits command,

334-335

exits, 22, 373

attributes, 388-390

creating, 334-335,

383-391

defining, 22, 293

deleting, 391

DikuMUD movement

messages, 136

lists of exits, 390-391

locking, 392

navigating, 13-17, 108

exp() function, 422

experience points

(EP), 478

advancing levels,

131-132

death, 46

quests, 211

resurrection, 60

statistics, 38-39

explode() function,

265, 270

exploring (social

MUDs), 104

expressions (MOO),

357, 359

external functions

(efun), 254

extract() function,

265, 422

502 eye command

eye command, 112

eyeball command, 112

F
F2F (face to face), 478

@fail command, 377,

389, 411

Fantasia, 445

FAQ (Frequently Asked

Questions) lists, 470

Farside, 446

fdiv() function, 422

@features com-

mand, 110

features, adding,

110-112

feelings, see emotions

feh command, 112

@femit command, 411

fertile permissions

(objects), 351

Fiery, 446

fighter guilds, 41, 166

file system commands

(apprentice wizards),

226-233

File Transfer Protocol

(FTP) client pro-

grams, 183

file_name() func-

tion, 265

file_size() function, 266

file_time() func-

tion, 266

files

compiling client pro-

grams, 184-185

copying, 227-229

deleting, 232

editing, 235-237

#include statement,

253-254

inheritance, 253-254

listing, 229

2OOOOOSHGGHSS 999096 0S9999 990 S90 SS80906

logging sessions to files,

95, 197

moving, 230-231

saving (Tintin++), 186

transferring client

programs, 183, 196-198

uncompressing client

programs, 183

fill command, 154

@filter command, 411

filter() function, 422

filter_objects() func-

tion, 266

Final Challenge,

The, 446

Final Frontiers-

TrekMOO, 446

Final Realms, 446

@find command, 412

find_call_out() funnc-

tion, 266

find_living() func-

tion, 267

find_object() func-

tion, 267

find_player() func-

tion, 267

finger command, 134

fingering, 54

First Light, 446

first() function, 422

first_inventory()

function, 267

fix command, 132

flags (MUCK/MUSB),

379, 430-433

flags() function, 422

flaming MUDs, 469

flee command, 148

fleeing combat

(DikuMUDs), 148

floats, 306

floor() function, 423

fold() function, 423

follow command, 172

food/water,

139-140, 144

FooTalk client pro-

gram, 485

for statements (MOO),

360-361

for() loop, 251-252

@force command,

407, 412

forking verbs (MOO),

368-369

formatting codes in

text (MUSH), 396

@forwardlist com-

mand, 412

@fpose command, 412

Fran Litterio’s Multi-

User Dungeon Page

(World Wide

Web), 470

FredNet MOO, 446

french command, 112

friendships on MUDs,

92-93

FTP (File Transfer

Protocol) client pro-

grams, 183

full names, 17

Full Update command

(MUDDweller), 198

fullname() func-

tion, 423

function_exists()

function, 268

functions, 254-291,

420-430

creating objects, 295-302

man command topics,

237-238

programming MUDs,

400-401

return statements, 249

FurryMUCK, 25-26, 34,

371, 447

Future Realms-

TrekMUSH, 447

G
@gag command, 109

gagging text, 182, 202

@gaglist command, 109

game drivers

(LPMUD), 239
Garou, 447

GateWay, 447

gating, see teleporting

@gender command, 107,

315, 322

gender issues, 33,

100, 380

generic objects, 310-311,

349-350

Genesis, 447

Genocide, 48, 447

get all command, 137

get all from corpse

command, 46, 127, 147

get command, 27, 119,

137, 320-321, 372

get() function, 268,

401, 423

get_dir() function, 268

get_eval() function, 423

get_localcmd() func-

tion, 269

@gfail command, 412

ghosts, 46

giggle command, 112

give command, 27, 119

give locks, 378

glare command, 112

Glass Dragon, The, 448

global variables,

242, 292
gloves (armor

types), 299

@go command, 108-109

go command, 372

GodsHome, 448

Gohs, 448

gold, see money

gossip command,

87,171

goto command, 225

grab command,

138, 153

grab_file() func-

tion, 269

graphic interfaces

(BSXMUD client
programs), 486

graphs/sundials,

122-123

grat command, 171

gratz command, 87

Grimne, 448

grin command, 112

group command,

172-173

group say com-

mand, 171

group tell com-

mand, 171

grouping, 172-175

grump command, 112

gt() function, 423

gte() function, 423

guest accounts, 55, 68

guests, booting, 72

guildmasters, practic-

ing skills/spells,

142, 162

guilds, 40-44

advancing levels,

131-132

cleric, 168-169

DikuMUDs, 64, 166-169

fighter, 166

join command, 131

magic-user, 166-167

multiple guild charac-

ters, 169

player descriptions, 20

races (characters), 45

renouncing, 131

selecting, 44, 59

thief, 167-168

GypsyMUD, 448

huh verb (MOO) 503

SDBSSSOSS8 9S9OS6909 9080989900 00890006

H
Hall of Fame Mud, 448

@halt command,

403-405, 412

harassment (gender

relations), 33, 71, 79

HARI MUD, 448

Harper’s Tale, 448

hasflag() function, 423

healing/health of

characters, 122,

143-144

heart_beat() func-

tion, 269

heartbeats (players), 21

helmets (armor

types), 299

#help command

(Tintin++), 185

help command, 70, 106,

151, 372

editing text, 332

MOO, 327, 470

Hero of the Lance 2, 449

hidden exits, 13

Highlands, 449

#Hhighlight command

(Tintin++), 191

highlighting text,

182, 202

history of MUDs, 471

hit points (HP), 37,

129-130, 149, 163, 478

hitroll, 164

hold command, 153

HoloMUCK, 449

HoloMUD, 449

. Holy Mission, 449

home (MUSH/MUCK),

374

home command, 109,

226, 372

home directories, 240

home() function, 423

hug command, 112

huh verb (MOO), 324

504 human (races)

DE QOOOSOHOSH9OOOHOGHSSSS 9 O9S9SSSB9S SSO 000% BE

human (races), 161

Hypertext Hotel, 449

IC (Im Character), 35,

87, 478

id() function, 270

Idea Exchange, The, 449

@idescribe command,

393, 412

@idle command, 412

idle() function, 423

IDs, see naming

#if command

(Tintin++), 192

if statements (MOO),

342-343

if-else statements,

249-251

ignore command, 112

Igor MUD, 450

ImagECastle, 450

ImagiNation Network,

117-118

immortal, 479

implode() function, 270

in-lists (exits), 383

Incarnations, 450

#include statement

(programming MUDs),

253-254

increasing statistics, 39

index() function,

270-271, 423

indexing, 244, 360

indirect locks, 378

@infilter command, 412

infravision, 44, 63

inherit_list() func-

tion, 271

inheriting

objects; 2915 2954297,

299, 301

programming MUDs,

253-254

properties, 353-354

init() function, 271

initiating combat, 126,

145-146

@inprefix com-

mand, 412

input_to() function,

271-272

insert command, 328

insert() function, 423

installing/configuring

client programs,

182-184, 195-196

int (function

value), 254

integer variables,

242-243

integers, 220

intelligence (statistics),

37, 59, 161

interactive() func-

tion, 272

Internet, 4

client programs, 179-202

protocols, 49-55

types of MUDs, 435-468

intp() function, 272

Introduction to MU*s

(World Wide

Web), 471

inventory command,

20, 107, 119, 158,

312, 372

invisibility, 152,

158, 206

IRC (Internet Relay

Chat) compared to

MUDs, 4

isdbref() function, 424

isnum() function, 424

iter() function, 424

Ivory Tower, 450

Jay’s House MOO, 105,

110, 450
JeenusTooMUD, 450

@join command, 109

join command, 131

judges, 35, 117

junk command, 153

Jurassic Weyr, 450

K
KallistiMUD, 451

KAOS MUD, 451

Kerovnia, 451

@kids command, 356

@kill command, 412

kill command, 126,

145-146

killing

monsters, 127

players, 47-48, 374

kiss command, 112

KoBra Mud, 451

L
lag, 480

@lalias command, 412

LambdaMOoO, 5,

104-105, 451, 493

adding features, 111-112

creating characters,

67-68

logging on, 67-73

political aspects, 7

rooms, 23

rules, 70-72

LambdaMOO

Programmer’s Manual

(World Wide Web),

473

Lands of Tabor,

The, 451

Lars Pensj | Multi-User

Dungeon, see LPMUDs

@last command, 412

Last Outpost, 451

lattr() function, 424

laugh command, 112

Icon() function,

402, 424

Icstr() function, 424

Idelete() function, 424

@leave command,

393, 412

leave locks, 378

Legend of the

Winds, 452

length operators

(MOO), 360

$letter object class

(MOO), 326

levels

advancing, 131-132

Statistics, 39, 165

wizards, 207-208

lexits() function, 424

@lfail command, 413

Ifun (local func-

tions), 254

@link command, 394,

413, 415

link death, 304, 480

link locks, 378

@list command,

356, 413

list command, 132, 328

$list_utils (MOO), 364

@listen command,

397-398, 413

listening (objects),

397-398

listing files, 229

@listmotd com-

mand, 413

lists

actions (MUSH/

MUCK), 375

exits, 390-391

for statements (MOO),

360-361

objects, 402-403

/listworlds command

(TinyFugue), 201

living() function, 272

ljust() function, 424

In() function, 424

Inum() function, 424

load command, 234

/loadworld command

(TinyFugue), 201

loc() function, 401, 424

local functions

(ifun), 254

local variables, 242

localcmd command, 222

locate() function, 424

Loch Ness, 452

@lock command,

376-380, 413

lock() function, 424

locks on exits,

376-379, 392

log directory, 240

log() function, 424

log file() function, 272

logging on, 49-73

EliteMUD, 62-66

guest accounts, 55, 68

LambdaMOoO, 67-73

passwords, 55-56

RealmsMUD, 57-62

TCP/IP, 49

telnet, 50-55

UNIX, 50

logging sessions to files,

95, 197, 202

logical operators,

193, 358

long() function, 273

look command, 16, 107,

118, 152, 323-324,

355, 372

Looney, 452

LPMUDs 505
2DSSOOO S89 9S9GS 9900889999900 000800E

#loop command

(Tintin++), 193-194

loops (programming

MUDs), 251-253

Lost Library of MOO

(World Wide

Web), 473

Lost Mud, The, 452

Lost Souls, 452

lower_case() func-

tion, 273

LPC (Lars Pensj | C),

216, 478

bugs in programming,
304-305

comments, 241-242

#define statement, 253

escapes, 253

functions, 254-291

#include statement,

253-254

inheritance, 253-254

loops, 251-253

MUDLIib, 216-217

operators, 246-248

programming LPMUDs,

291-303

syntax, 248-251

#undef statement, 253

variables, 242-246

LPC Guide (World Wide

Web), 472

LPMUDs, 3, 5, 118-132,

478, 488

basic commands,

118-119

client programs,

194-200, 483-484

creating

characters, 57

rooms, 22

death of characters,

45-46, 130

describe command, 19

DGD (Dworkin's Game

Driver), 216

506 LPMUDs

99D OOOHHHH9IH HOH 9HHHH9DVOGVHPDHHHDDI DIV OHPSVISOVSS

doc directory, 240

emotions, 82-86

guilds, 40

log directory, 240

LPGs(arseP ens] li@);

216, 478

LPC Guide (World Wide

Web), 472

MUDLIib, 216-217

MudOS Manual Pages

(World Wide Web), 472

MudOS server, 216

Nightmare LPMUD list

(World Wide Web), 472

object directory, 240

open directory, 240-241

player levels, 207

players directory, 241

political aspects, 7

programming, 216,

219-306

armor, 299-301

arrays, 244-245

bugs, 304-305

comments, 241-242

containers, 301-302

#define statement, 253

escapes, 253

functions, 254-291

game drivers, 239

if-else statements,

249-251

#include statement,

253-254

inheritance, 253-254

loops, 251-253

monsters, 295-297

operators, 246-248

rooms, 291-295

syntax, 248-251

treasure, 302-303

type modifiers, 245-246

#undef statement, 253

variables, 242-246

weapons, 297-299

prompts, 12

quests, 211-212

say command, 82

scars, 20

secure directory, 241

selecting wizards,

210-212

spell points, 37-38

tell command, 86-87

Usenet newsgroups, 468

who command, 88

LPTalk client pro-

gram, 482

Is command, 229

Is() function, 273

It() function, 424

Ite() function, 425

LustyMud, 452

Iwho() function, 425

Macintosh client pro-

grams, 182, 194-200

macros, 198-202

MacTCP protocol,

195, 198

MadROM, 452

Mage Guild, 41-42

magic spell points, 37

magic numbers

(MOO), 368

magic-user guilds, |

166-167
magical bonuses,

weapons/armor, 165

mail-order MUD

lists, 468

man command, 237-238

mana points, 163

manipulating text,

181-182

#map command

(Tintin++), 187

map() function, 425

map_array() func-

tion, 274

mappings, 305

maps, attaching new

areas, 304

Marches of Antan, 452

#mark command

(Tintin++), 187

marriage on MUDs, 94

Masquerade, The, 453

match command

(MUDDweller), 199

match() function,

401, 425

$match_ utils

(MOO), 363

#math command

(Tintin++), 192-193

mathematical opera-

tions (Tintin++),

192-193

maving, 480

max() function, 425

MediaMOO, 105-106

Medieva Cyber-

space, 453

member() function, 425

member_array() func-

tion, 274

mentors for apprentice

wizards, 220

MERC (type of

MUD), 436

merge() function, 425

mess command, 112

@messages command,

333, 335

messages

customizing objects

(MOO), 332-333

MUSH/MUCK, 373

pronoun substitution,

346-347, 362

properties (MOO),

345-347

$string utils (MOO),

362-363

verbs (MOO), 339-340

$you say_action verb
(MOO), 363

Metaverse, 453

mid() function, 425

Midnight Sun, 453

Might, Magic & Mush-

rooms, 453

min() function, 425

MirrorMOO, 216, 453

mixed variables, 244

mkdir command, 229

mkdir() function, 274

mmMOoO, 475

mod() function, 425

modifying statis-

tics, 165

money, 44, 374

money() function, 425

Monk Guild, 42

monsters, 126-127

consider command, 145

creating, 294-297

damage levels, 20

differentiating between

players and mon-

sters, 15

MOOs, 3, 5, 105-113,

478, 492

basic commands,

106-107

clients, 309-310

combat MUDs, 116-117

cores, 217

creating rooms, 22

database, 309

describe command, 19

emotions, 82-84,

111-113

features (special com-

mands), 110-111

help command, 327

help systems (World

Wide Web), 470

Jay’s House MOO, 105,

110, 450

LambdaMOO, 5, 7,

104-105, 451, 493
adding features,

111-112

logging on, 67-73

rooms, 23

MediaMOO, 105-106

MirrorMOO, 216, 453

navigating, 108-109

objects, 107-108,

307-314

page command, 86-87

players, 207, 311-314

political aspects, 7

programmer bits,

311-312

programming, 216,

307-369

aliases, 313

argument specifiers

(verbs), 319-320

arithmetic opera-

tors, 358

assignment state-

ments, 357

@audit command, 367

built-in properties, 348

changing parents,

315-316

changing player

classes, 316

client-based editing, 332

comparison opera-

tors, 358

conditional expres-

sions, 359

containers, 364-366

@copy command, 368
creating exits, 334-335

creating rooms,

333-335

customizing messages

from objects, 332-333

defining verbs, 335-337

deleting properties, 348

deleting verbs, 341-342

MOOs

describing containers,

365-366
describing objects,

314-315

describing players, 315

editing object text,

327-333

elseif statements, 343

error messages,

366-367

eval command, 356-357

exiting editor, 331

exploring objects,

355-356
expressions, 357

for statements, 360-361

forking verbs, 368-369

generic objects, 349-350

get command, 320-321

if statements, 342-343

lists, 360-361

logical operators, 358

look command,

323-324

magic numbers, 368

message properties,

345-347

messages with verbs,

339-340

note objects, 324-326

object numbers, 308

objects, 312-317

overriding verbs, 365

pass() function, 366

permissions/ownership,

350-355

prepositions, 317, 349

pronoun substitution,

346-347, 362

properties, 343-348

@quota command, 367

recycling objects,

316-317

say command, 320

strings, 359-360

tell command, 338

507
YBDOQBDOSGH GH OOSSB9HGOSGSHOO8G9HHHHHHO0H8HOSOOOOOOOOOE

508 MOOs

ticks (time units), 368

tostr operator, 361

utility objects, 361-364

valid operator (ob-

jects), 359

variables, 338-341

verb abbreviations,

348-349

verb subroutines,

337-338

verb synonyms,

348-349

verbs, 317-324

whitespace, 344

prompts, 12

properties, 308

proprietary com-

mands, 110

say command, 82

selecting wizards, 209

servers, 310

TinyFugue client pro-

gram, 200-201

verbs, 308

who command, 88

MOO-Cows FAQ (Fre-

quently Asked

Questions) list (World

Wide Web), 470

MOO-WWW Research

Directory, 474

MoonStar, 453

MooseHead SLED II, 453

more command, 230

mortal, 480

Mortal Realms, 454

mortal wounds

(DikuMUDs), 150

@move command, 334,

348, 413

move_object() func-

tion, 274

movement commands

(apprentice wizards),

225-226

movement points,

163-164

1DHWOOGHHHHHOHIWSOGHGOHHS DIOHHHSHOVS

moveto command, 361

moving files, 230-231

moving in MUDs, see

navigating

MTP (MUD Transfer

Protocol), 198

MUCKs, 3, 5, 105

@commands, 408-420

action lists, 375

attributes of objects, 375

basic commands,

372-373

@commands, 374-375

describe command, 19

emotions, 82-84

flags, 379, 430-433

FurryMUCK, 34,

371, 447

home, 374

killing players, 374

locks, 376-379

messages, 373

money, 374

MUEF (Multi-User

Forth), 478

object numbers, 373-374

objects, 373

page command, 86-87

player levels, 207

programming, 216,

371-395, 408-420,

430-433

container objects,

393-394

drop-to rooms, 394-395

exits, 383-391

locks on exits, 392

objects, 391-392

players, 379-380

rooms, 380-383

prompts, 12

pronoun substitu-

tion, 376

rooms, 25-26

say command, 82

selecting wizards, 209

teleporting, 379

TinyFugue client pro-

gram, 200-201

TinyMUD, 371

who command, 89

MUDs (Multi-User

Dimension/Dungeon),

3-9, 478

academic papers con-

cerning MUDs, 473-474

acronyms, 477-479

addictiveness, 5, 8-9

alternatives, 117-118

client programs, 179-202

combat MUDs, 115-132

compared to IRC

(Internet Relay Chat), 4

creating personalities, 4

DikuMUDs, 133-177

logging in, 49-73

LPMUDs, 118-132

mail-order MUD

lists, 468

navigating, 12-17

speedwalking, 180

Tintin++ client program,

186-187

political aspects, 7, 9

programming, 215-217

MOOs, 307-369

MUCKs, 371-395,

408-420, 430-433

MUSHes, 371-433

World Wide Web

resources, 472

prompts, 12

RealmsMUD, 119-126

relationships, 91-101

servers, 215-216, 487-493

sessions, connecting

(Tintin++), 185-186

smileys, 479

social aspects, 8, 77-89

social MUDs, 103-113

suspending MUD

sessions, 54-55

types of MUDs, 435-468

Usenet newsgroups,

468-469

user interfaces, 6-7,

11-29

wizards, 205-212

programming MUDs,

219-306

selection process,

209-212

World Wide Web,

469-475

MUD (server), 488

MUD FAQ (Frequently

Asked Questions) List

(World Wide

Web), 470

MUD marriage, 94

MUD Object Oriented,

see MOOs

MUD Resource Collec-

tion from Lydia Leong

(World Wide

Web), 470

MUD sex, 95-100, 480

MUD Transfer Protocol

(MTP), 198

MUD.el client

program, 483

MUDCaller client

program, 486

MUDdex (World Wide

Web), 471

MUDDweller client

program, 194-200, 486

Muddy Waters, 454

MUDLIib, 216-217,

239-241

Mudling client pro-

gram, 486

MUDname() func-

tion, 425

MUDnames, 32-33, 480

MudOS (type of

MUD), 436

MudOS Manual Pages

(World Wide

Web), 472

MudOS server, 216

MUDS @ Lysator (World

Wide Web), 471

MudWin client pro-

gram, 485

MUEF (Multi-User Forth),

216, 371, 478

MUG (Multi-User

Game), 492

mul() function, 425

Multi-User Simulation

Environment

(TinyMUSE), 491

multimedia MOOs, 475

multiple guild charac-

ters, 169

MuMOO, 454

MUSH (Multi-User

Shared Hallucination),

3, 5, 105, 478

@commands, 374-375,

408-420

action lists, 375

Almost-Complete List of

MUSHes (World Wide

Web), 472

attributes of objects, 375

basic commands,

372-373

combat MUDs, 116-117

command queue, 403

describe command, 19

emotions, 82-84

flags, 379, 430-433

functions, 400-401,

420-430

home, 374

killing players, 374

locks, 376-379

messages, 373

money, 374

numbered variables,

398-399

509 Mystic Adventure

IP DOOGHGOGSOSOSS OOGGG99 9009098905 900000800'

objects, 373-374,

397-398
page command, 86-87

percent substitutions,

395-396

player levels, 207

programming, 216,

371-433

container objects,

393-394

drop-to rooms, 394-395

exits, 383-391

locks on exits, 392

objects, 391-392

players, 379-380

rooms, 380-383

prompts, 12

pronoun substitu-

tion, 376

puppets, 406-407

registers/triggers,

396-397

role-playing, 35

rooms, 24-25

say command, 82

selecting wizards,

209-210

semaphores, 405-406

Storyteller MUSHes,

116-117

@switch command,

401-402

teleporting, 379

user-defined commands,

399-400

who command, 89

MUTT client pro-

gram, 485

mv command, 230-231

@mvattr command, 413

MyMud.el client pro-

gram, 484

Mystic Adventure, 454

510 NAILS

N
NAILS, 454

@name command,

392, 413

name() function,

401, 426

NamelessMUSH, 454

naming

message properties, 345

MUD characters, 4, 32-33

objects, 16-17, 313

NannyMUD, 454

NANVAENT, 454

navigating, 12-17

DikuMUDs, 135-136,

151-155

directions, 12

MOOs, 108-109

path settings, 187

speedwalking, 151,

180, 187

Tintin++ client program,

186-187

nearby() function, 426

NecroMOO, 455

neq() function, 426

NES Mush (The Never-

Ending Story), 455

netiquette, 79-81

New Hercules MUD, 455

New Moon, 455

newbies, 6, 480

newbie areas, 62,

120-121

strategy, 173-175

newsgroups (Usenet),

468-469

next() function, 426

next_inventory()

function, 274

nicknames (rooms),

assigning, 109

Nightmare, 455

Nightmare LPMUD list

(World Wide

Web), 472

DOOOOOSHGHS9S9 OGSG99SSS9 9 SS99SS0E

Nirvana, 455

nod command, 112

noise (social MUDs), 104

nomask type modifier,

245, 255

Northern Cross-

roads, 455

not() function, 426

$note object class

(MOO), 324

note headline com-

mand, 123

note objects (MOO),

324-326

@notedit command,

327-328

$nothing variable
placeholder, 341

@notify command,

405, 413

notify_fail() func-

tion, 275

NPCs (non-player

characters), 34

Nuclear War, 455

NULL exits, program-

ming, 387-388

null strings (MOO), 360

num() function, 426

numbered variables,

398-399

0
obj() function, 426

object classes

(MOO), 309

object directory, 240

object manipulation

commands (apprentice

wizards), 233-235

object numbers, 313

magic numbers, 368

MOO, 107-108, 308

MUSH/MUCK, 373-374

object variables,

243-244

object_time() func-

tion, 275

Sobject_utils (MOO),

363-364

objectp() function, 275

objects, 14, 17-29, 220

attributes, 375, 400

auto-loading, 278

carrying, 137

combat MUDs, 28-29

creating, 103-104, 206,

391-394

donating, 140-141

editing text, 331-332

function value, 255

inheriting, 291, 295, 297,

299, 301

invisibility, 152, 158

listening, 397-398

lists of objects, 402-403

locking, 376-379

MOO, 307-308

changeable properties,

353-354

containers, 364-366

creating, 312-313,

333-335, 349-350

customizing messages,

332-333

database, 309

describing, 314-315,

322-323

editing text, 327-333

exits, 334-335

exploring, 355-356

generic objects,

310-311, 349-350

letter objects, 326

message properties,

345-347

naming, 313-314

note objects, 324-326

permissions, 350-351

players, 359

properties, 308,

343-348

recycling, 316-317

unchangeable proper-

ties, 354-355

utility objects, 361-364

verbs, 308, 317-324

MUCK, 373

MUSH, 373

naming, 16-17, 392

object-defined com-

mands, 17

parents, changing,

315-316

players, 18-21

rooms, 21-26

shadows, 285-286

verbs (MOO), 320-321

viewing, 16

obvious exits, 13

@odescribe com-

mand, 414

@odfail command, 414

@odrop command, 375,

388, 414

@oefail command, 414

@oemit command, 414

@oenter command,

393, 414

@ofail command, 377,

389, 414

@ogfail command, 414

Ogham, 489

@okill command, 414

@oleave command,

393, 415

@olfail command, 415

@omove command, 415

OOC (Out of Character),

87, 478

OpalMUD, 456

OPAQUE (flags), 432

@opay command, 415

@open command,

383-387, 415

open directory, 240-241

operators (program-

ming MUDs), 246-248

or() function, 426

orcslayer quest, 211

@orfail command, 415

@osuccess command,

377, 388, 415

@otfail command, 415

Other MUSH, 456

@otport command, 416

@oufail command, 416

@ouse command, 416

out-lists (exits), 383

Overdrive, 456

overriding verbs

(MOO), 365

@owned command, 416

owner() function, 426

ownership/permissions

(MOO), 350-355

@oxenter command,

393, 416

@oxleave command,

393, 416

@oxtport com-

mand, 416

P
PaderMUD, 456

page command, 86-87,

107, 372

page locks, 378

paladins, 166

PANIC message (wimpy

command), 149

paperwork com-

mand, 112

Paradox, 456

@parent command, 416

parent object class

(MOO), 309

parent() function, 426

parentheses (), 249

@parents command,

316, 356

Phoenix: A Web/MOO Client

29OOOSSSGOSOOLOQOSSHOOOSOO8OO

511

parents, changing,

315-316

parse() function, 426

parse_command()

function, 306

partying, 130, 176-177

pass() function, 366

passwd command

(MUDDweller), 199

@password command,

107, 416

passwords, 55-56, 379

pat command, 112

#path command

(Tintin++), 187

pith settings

(Tintin++), 187

Pattern, The, 456

Patternfall, 456

pausing text (client

program options), 182

@pay command, 416

peer-to-peer games, 216

@pemit command, 417

PennMUSH, 491

people command,

222-224

percent substitutions,

395-396

Perilous Realms, 457

$perm_utils (MOO), 364

permissions/ownership

(MOO programming),

350-355

PERN (type of

MUD), 436

PernMUSH, 457

personalities, 31-48

creating, 4

player objects, 18-21

selecting MUDnames,

32-33

PHANTAZM, 457

Phidar, 457

Phoenix: A Web/MOO

Client, 457, 474

512 pi() function

pi() function, 426

PiliusMUD, 457
PK (player killing), type

of MUD, 478
PK MUD, 457

$player, 310

player characters

(PCs), 34
player classes (MOO),

311-312, 316
players, 7, 18-21

compared to characters,

31, 34-35
compared to wizards,

208-209

damage levels, 20

death, 21

definition, 373

describe command, 19

differentiating between

players and mon-

sters; i

disciplining, 206

gender relations, 33

guilds, 20

heartbeats, 21

inventory command, 20

killing, 47-48, 374

link death, 304

locating, 108

MOO, 314-315, 321-323

newbies, strategy,

173-175

programming (MUSH/

MUCK), 379-380

scars, 20

SIZES CA

strategy, 175-177

players directory, 241

PMC-MOO, 457

PME client pro-

gram, 483

pointerp() func-

tion, 275

pointers (object vari-

ables), 243

19 OOOOSHH99S 90009955999 999S9S99S99 9090

points command,

59, 131

poke command, 112

politics of MUDs, 7,9

forming allies

(DikuMUDs), 175-176

selecting wizards, 209

ports, 50-53

pos() function, 426

pose command, 82, 373

positional parameters,

see numbered vari-

ables

poss() function, 427

power() function, 427

PPP (Point-to-Point

Protocol), 51

practice command,

142, 162

practicing skills/spells,

141-142, 162, 174

PrairieMUSH, 458

pray command, 46,

60, 130

precedence of opera-

tors, 246

Preferences menu

(MUDDweller), 196

@prefix command, 417

prepositions (MOO),

317, 349

present() function,
275-276

previous_object()

function, 276

Priest Guild, 42

PrimalMUD, 458

PRISM, 490

private type modifier,

245, 255

process_string() func-

tion, 277

process_value() func-

tion, 277-278

profanity on MUDs, 79

$prog player class

(MOO), 311

@program com-

mand, 337

@programmer com-

mand, 312

programmer bits

(MOO), 311-312

programming MUDs,

215-217

armor, 299-301

attributes, 400

bugs, 304-305

command queue, 403

commands (user-

defined), 399-400

comments, 241-242

containers, 301-302

debugging code, 242

#define statement, 253

drop-to rooms, 394-395

escapes, 253

exits, 383-391

functions, 254-291,

400-401

if-else statements,

249-251

#include statement,

253-254

inheritance, 253-254

locks, 377-379, 392

loops, 251-253

LPMUDs, 216-217

monsters, 295-297

MOOs, 216-217, 307-369

MUCKs, 216, 371-395,

408-420, 430-433

MUSHes, 216, 371-433

objects, 391-394,

397-398

operators, 246-248

players, 379-380

puppets, 406-407

rooms, 291-295, 380-383

semaphores, 405-406

@switch command,

401-402

syntax, 248-251

treasure, 302-303

variables, 242-246, 376,

395-399

weapons, 297-299

wizards, 219-306

World Wide Web

resources, 472

see also creating

prompts, 12

pronoun substitutions,

346-347, 362, 376

properties (MOO), 308,

333-334, 343-348,

352-355

@property command,

343, 354

protocols (Internet),

49-53

@ps command, 403, 417

Psycho-thriller, 458

public type modifier,

245, 255

pubs/taverns, 121-122

puppets, 406-407

put command, 154

pwd command, 232

Q
quaff command, 155

query_auto_load()

function, 278

query_host_name()

function, 278

query_idle() func-

tion, 279

query_ip_name()

function, 279

query_ip_number()

function, 279

query_level() func-

tion, 279

query_load_average()

function, 279

query_name() func-

tion, 280

query_prevent_shadow()

function, 280

query_snoop() func-

tion, 280

query_verb() function,

280-281

quests, 211-212

queue (for com-

mands), 403

quiet command

(MUDDweller), 199

QUIT command, 373

@quota command,

367, 417
Quovadis, 458

r() function, 427

races (characters),

44-45, 63, 160-161

Ragnarok, 458

rand() function,

401-402, 427

random () function, 281

rangers, 166

read command, 17,

122-123, 155, 326

read_bytes() func-

tion, 281

read _file() function,

281-282

readable permissions,
350-353

real-life compared to

MUD friendships,

92-93

real-time interaction, 4

Realms of Imagina-

tion, 458

Realms of Magic

(DikuMUD), 134, 458

Realms of the Dra-

gon, 459

RealmsMUCK, 459

513 reply command

'2S2BODDSGOSOSSOYSGS S009 8 99950900008 0006

RealmsMUD, 459

emotions, 85-86

guilds, 40

logging on, 57-62

rooms, 119-126

rules, 60-61

selecting guilds, 59

Statistics, 38

reboot, 480

receptionists, renting

weapons/armor, 170

recite command, 155

recording conversa-

tions, see capturing

@recycle command,

316-317, 391, 417

recycling objects (MOO),

316-317

regenerating charac-

ters, 164

Regenesis, 459

@register com-

mand, 396

registers/triggers,

396-397

@reject command, 417

relationships on MUDs,

91-101

remove command, 123,

138, 154

remove() function, 427

remove call _out()

function, 282

@rename command,

313-314, 348

rename() function, 282

renaming objects,

313-314, 392
Renegade Outpost, 459

renouncing guilds, 131

rent command, 170

renting weapons/

armor, 170

repeat() function, 427

replace() function, 427

reply command, 171

514 Requiem

JOH OOOSSSSHSSS VOVS SHS SSS VQSSSPSSPSIVBIVVOPSSSSIIOoE

Requiem, 459

reset() function,

282, 292

rest command, 144, 157

rest() function, 427

restore_object() func-

tion, 282-283

resurrection after

death, 46, 60, 130

#return command

(Tintin++), 187

return statements, 249

Revenge of End of the

Line, 459

reverse() function, 427

revwords() func-

tion, 427

REXXTALK client

program, 485

@rfail command, 417

RiffRaff’s Unofficial

List of DikuMUD

Home Pages (World

Wide Web), 472

Rift, 460

risks of MUD relation-

ships, 96-101

rjust() function, 427

rloc() function, 427

rm command, 232

rm() function, 283

rmdir command, 232

rmdir() function, 283

@rmfeature com-

mand, 110

@rmprop com-

mand, 348

@rmroom com-

mand, 109

@rmverb command,

341-342

@robot command, 417

robots, 181

RockyMud, 460

Rogue, 460

role-playing, 7-9, 31-48

social MUDs, 104

Storyteller MUSHes,

116-117

whisper compared to tell

command, 87

ROM (type of MUD), 436

romance on MUDs,

93-101

RoninMUD, 460

$room, 310, 333

@room command, 109

room() function, 427

rooms, 21-26, 373

assigning nick-

names, 109

attaching to main

map, 304

bulletin boards, 123-124

church, 60, 120

connecting, 382

creating, 22

defining exits, 22, 293

descriptions, 136

DikuMUDs, 24, 135-136

drop-to rooms, program-

ming, 394-395

graphs/sundials, 122-123

LambdaMOo, 23

long descriptions, 293

MOO, 333-335

MUCK, 25-26

MUSH, 24-25

navigating, 13-17

newbie areas, 62,

120-121

programming, 291-295,

380-383

RealmsMUD, 119-126

shops, 124-126, 139-141

short descriptions, 292

taverns/pubs, 121-122

verbs (MOO), 320,

323-324

Root Class object,

310-311

$root_ class, 310

round() function, 427

rounds (combat),

129-130

rtfm command, 113

rules

LambdaMOoO, 70-72

RealmsMUD, 60-61

running, see executing

@runout command, 417

runtime errors, verbs

(MOO), 367

S
s() function, 401, 427

sacrifice command, 153

Sanctuary, 460

Sanguinis Nobilis, 460

sarcasm on MUDs, 81

save command, 39,

143, 331

save_object() func-

tion, 283

#savepath command

(Tintin++), 187

/saveworld command

(TinyFugue), 201

saving

configuration sessions

(MUDDweller), 196

text (MOO), 331

weapons/armor, 170

say command, 81-82,

106, 119, 171, 320, 373

say() function, 283-284

SayWat client pro-

gram, 482

scars (LPMUD), 20

score command, 36, 119,

131, 143, 157-158

Scott Geiger’s MUD list

(World Wide

Web), 472

screen customization

(client programs), 182,
190-192, 196

screen mode (client

programs), 202

scrolls of identify, 165

scrolls of recall, 155

@search command, 417

search() function, 427

secs() function, 428

secure directory, 241

secure() function, 428

security, 56, 305

selecting

guilds, 44, 59

MUDnames, 32-33

passwords, 55-56

wizards, 209-212

sell command, 124, 140

selling weapons, 44

semaphores, 405-406

send command

(MUDDweller), 200

Serial Line Internet

Protocol (SLIP), 51

servers for MUDs, 180,

215-216, 310, 487-493

#session Command

(Tintin++), 185-186

@set command, 344, 417

set_bit() function, 284

set_heart_beat() fuinc-

tion, 284

set_light() function,

284-285, 292

$set_utils (MOO), 364

setdiff() function, 428

@sethom command, 109

@sethome command,

321-322

setinter() function, 428

setq() function, 428

setunion() func-

tion, 428

@sex command,

380, 418

sex on MUDs,

95-100, 480

sexual harassment, 33,

71, 79

shadow() function,

285-286

Shadowdale, 460

Shadowrun MUSH, 460

Shadow’s Edge, 461

Shards, 461

shields (armor

types), 299

shops, 124-126, 139-141

short() function, 287

shout command, 37,

87-88, 119, 171

shout() function, 287

shouting, 71

shrug command, 113

sigh command, 113, 141

sign command, 110

sign() function, 428

Silicon Realms, 461

sin() function, 428

sizeof() function, 287

sizes of players, 21, 45

skills command,

142, 158

skills/spells, practicing,

141-142, 162

sleep command,

144, 156

slice_array() func-

tion, 287

SLIP (Serial Line

Internet Protocol), 51

Sloth II, 461

smile command,

111, 113

smileys, 81, 479

smirk command, 113

SMUG (Small Multi-User

Game), 493

snooping (wizards), 206

social aspects of MUDs,

8, 77-89, 91-101, 104

social commands

(DikuMUDs), 155-156

social MUDs, 5, 103-113

TinyFugue client pro-

gram, 200-201

515 stand command

29 S9SGS S999 999G9OG 098999099 OO09 9009000 0000006

wizards, selection

process, 209-210

solving quests, 211-212

sort() function, 428

SouCon, 461

space() function, 428

SPAM MUD, 461

spamming, 71, 80, 480

#speedwalk command

(Tintin++), 187

speedwalking, 151,

180, 187

spell points (SP),

37-38, 478

spellcasters, 174

spells

aliases, 189

guilds, 40-42

newbies, 174

practicing, 141-142, 162

spells command,

142, 158

spend command,

59, 131

splice() function, 428

#split command

(Tintin++), 191

split command, 173

splitting screens (client

program options), 182,

191-192

Split Second, 461

sponsors for apprentice

wizards, 220

spoofing, 71, 81, 480

spying, 71

sqrt() function, 428

sscanf() function,

287-288

ST (Storyteller), type of

MUD, 436

StackMUD, 462

stacks, 52, 398

staff (wizard level), 210

stand command,

144, 157

516 Star Trek

ISS SSSSSSSSSSSSSSSOSSHSSSSS

Star Trek

Fir inal Fro ontiers—

kN —_— 4to

TrekMUSH 447

TrekMUSE, 464

starttime() func-

tion, 428

@startup command,

406, 418

static type modifier,

245, 255
statistics, 59, 161-169

alisnment.
Gilsiiils

chara Characters = -38,

161-162

172-173

‘(DikuMUDs), 165

MUSH role-playing, 3

points command, 131

races, 44-45

score command, 36, 143

spend command, 131

upgrading weapons

armor, 176

@stats command, 418

stats() function, 428

statues, 304

status variables, 243-246

Stick in the MUD, 462

StickMUD, 462

Storyteller MUSHes,

116-117

strategy in DikuMUDs,

173-177

strength (statistics),

37,161

StrikeNet, 462

string (function

value), 255

mn

string variables, 243

$string utils (MOO),

346, 362-363

stringp() function, 288

strings, 220, 340

braces ({}), 399

break_string() function,

257-258

concatenating, 359

escape codes, 253

MOO programming,

359-360

strlen() function,

288, 429

strmatch() func-

tion, 429

STYX, 462

sub() function, 429

subj() function, 429

subroutines, verbs

(MOO), 337-338, 341

subst command,

329-330

#substitute command

(Tintin++), 191

substituting pronouns

MOO

messages, 362

programming, 346-347

text in objects, 329-330

MUSH/MUCK, 376

substitution commands

(text manipula-

tion), 182

@success command, 377,

388, 418

sundials/graphs,

122-123

SunSITE: Papers: Com-

munications (World

Wide Web), 473

suspending MUD ses-

sions, 54-55

@sweep command,

109, 418

@switch command,

401-402, 419

switch() function, 429

Sword Quest, 462

SwordsMUSH, 462

syntax (programming

MUDs), 248-251

#sys command

(Tintin++), 194

system requirements

(client programs),

182-183

/
tail command, 233

tail() function, 288

take command, 373

talk command

(Internet), 4

tan() function, 429

Tapestries, 462

TAPPMUD, 463

tar xvf <filename>

command, 184

taverns/pubs, 121-122

TcITT client pro-

gram, 482

TCP/IP (Transmission

Control Protocol/

Internet Protocol), 49,

52, 179, 195-196

TeenyMUD, 492

@teleport command,

379, 419

teleporting, 71, 80, 108

apprentice wizard

commands, 225-226

MUSH/MUCK, 379

scrolls of eeedit TS

wizards, 206

tell command, 37,

86-87, 119, 171, 338

tell_object() func-

tion, 288

tell room() function,

288-289

telnet, 50-53, 179,.

309-310

Temple of Syrinx

MOO, 463

terminal emulations, 63

Terminal Guidance

Mud, 463

Tesseract, 463

test_bit() function, 289

Texas Twilight, 463

text

formatting codes

(MUSH), 396

gagging, 202

highlighting, 191, 202

manipulating, 181-182

MOO objects. 328-331

substituting, 191

@tfail command, 419

tfVMS client pro-

gram, 484

thief guilds, 43, 167-168

$thing, 311, 315
this _interactive()

function, 289

this_object() func-

tion, 289

this_player() func-

tion, 290

Thunderdome II, 463

ticks (time units), 368

time() function,

290, 429

Timewarp, 463

TINT client pro-

gram, 484

Tintin++ client pro-

gram, 184-194, 483

TINTw client pro-

gram, 484

TinyCWRU, 463, 475

TinyFugue client pro-

gram, 200-201, 482

TinyMAGE, 492

TinyMUCK, 490-491

TinyMUD, 5, 105, 371,

469, 490-492

TinyMUF, 371

XK Ke
SOY

TinyMUSE (Multi-User

Simulation Environ-
ment), 491

TinyMUSH, 475, 491

TinySex, 95, 480

TinyTalk client pro-

gram, 482-483

TinyTIM, 372, 464

TMI-2 (The MUD Insti-

tute), 464

toggle command,

159, 171

ToonMUSH 3, 464

ToonMUSH 4, 464

tostr operator

(MOO), 361

toy command, 113

@tport command, 419

tport locks, 378

trace() function, 306

traceprefix() func-

tion, 306

tracking, automa-

tion, 190

training, see practicing

trans command,

225-226

transferring files (client

programs), 183,

196-198

Transmission Control

Protocol/Internet

Protocol

seer Crip

trash bins, 305

trash command, 122

treasure (programming

MUDs), 302-303
TrekMUSE, 464

/trig command

(TinyFugue), 201

@trigger command, 397,

399, 419

triggers/automation,

181, 202, 396-397

system commands

(Tintin++), 194

University of MOO 517
DOG SSSSSBSSSSS9S8 99H 90H9H00890OS090S0S08900'

Tintin++ client program,

189-190
TinyFugue client pro-

gram, 201

tracking, 190

trim() function, 429

Trinity MUSH, 464

TrippyMUSH, 464
TRON, 465

trunc() function, 429

Tsunami, 465

TUBMUD, 465
Turf, 465

TUsh client pro-

gram, 483

Twilight MUD, 465
Two Moons, 465

type modifiers,

245-246, 255

type() function, 429

U
u() function, 429

UberMUD, 492

ucstr() function, 429

@ufail command, 419

UID security, 305

#unalias command

(Tintin++), 189

Unbridled Desire, 465

unchangeable proper-

ties (MOO), 354-355

uncompressing files

(client programs), 183

#undef statement

(programming

MUDs), 253

undocumented fea-

tures, see bugs

@ungag command, 109

ungroup command, 173

unique_array() func-

tion, 290

University of MOO, 465

518 UNIX

UNIX

client programs, 182,

482-483

fingering, S4

logging on via telnet, SO

tar xvf <filename>

command, 184

uncompressing files, 183

@unlink command,

391, 420

unlinking exits, 391

@unlock command, 420

#unpath command

(Tintin++), 187

Unsafe Haven, 466

#unsplit command

(Tintin++), 192

#unsub command

(Tintin++), 191

UnterMUD, 493

/unworld command

(TinyFugue), 201

update command,

198, 235

upgrading weapons/

armor, 176

UriMUD, 489

@use command, 419

use command, 155

use locks, 378

Usenet newsgroups, 4,

468-469

user interfaces, 6-7,

11-29

combat MUDs, 6

DikuMUD commands,

159-160

ImagiNation Network,

117-118

MUDDweller client

program, 197-198

navigating, 12-17

objects, 17-29

prompts, 12

Storyteller MUSHes, 117

user-defined com-

mands, 399-400

DOOOOOSSHHS PD GSOSHSSHSSHSSSS HOV SSosgs

users() function, 290

utility objects (MOO),

361-364

v() function, 401, 429

@va...@vz commands,

396, 420

Valhalla, 466

valid operator (MOO

objects), 359

value command,

124, 140

values of functions, 254

Vampire, The: The

Masquerade, 37

varargs (function

value), 255

variables, 242-246

assignment statements

(MOO), 357

creating rooms, 292

floats, 306

mappings, 305

numbered variables,

398-399

percent substitutions,

395-396

pronoun substitu-

tions, 376

registers/triggers,

396-397

stack, 398

Tintin++ client program,

192-193

verbs (MOO), 338-341

within aliases, 188

Veil of Seduction, 466

@verb command, 335

#verbatim command

(Tintin++), 189

verbs (MOO), 308,

317-326

abbreviations, 348-349

defining, 335-337

deleting, 341-342

error messages, 366-367

eval command, 356-357

exits, 334

forking, 368-369

messages, 339-340

overriding, 365

ownership, 351

permissions, 351-352

prepositions, 349

rooms, 333

saving text changes, 331

setting properties,

344-345

subroutines,

337-338, 341

synonyms, 348-349

tell command, 338

ticks (time units), 368

utility objects, 361-364

variables, 338-341

@version command, 420

version() function, 430

versions of game drivers

(LPMUD), 239

Vertigo, 466

VIE-MUD, 466

viewing objects, 16

Viking, 467

virtual terminals, 179

Virtual World of

Magma, 467

virtual worlds, see user

interfaces

VMS client programs,

484-485

void (function

value), 254

Void, The, 467

VT client program, 482

VWMaud client pro-

gram, 485

W
WackoMUSH, 467

waggle command, 113

@wait command,

403-405, 420

wait command

(MUDDweller), 200

waitlist (LlambdaMOO),

68-70

wake command, 113,

144, 156

walk to command, 110

water/food,

139-140, 144

wave command,

113, 141

Wayne’s World, 467

weapon class (WC), 126,

128, 478

weapon _class, 297

weapons/armor, 28-29

buying, 139-141, 174

DikuMUDs, 137-141,

169-170

enhancements, 164-165

guilds, 40-42

magical bonuses, 165

programming MUDs,

297-299

renting, 170

saving, 170

selling, 44

upgrading, 176

wield command, 28

wear command, 29, 119,

138, 153

web2mush, 475

where() function, 430

whereis command, 108

while() loops, 252-253

whisper command,

86-87, 107, 171, 373

whitespace (MOO)

programming, 344

@who command, 107

res
S% eS

WHO command, 373

who command, 88-89,

134, 152

@whois command, 105

wield command, 28,

119, 138, 153

wildcard characters

(*), 398
wimpy command,

129-130, 149, 480

wimpydir com-

mand, 129

Windy MUD, 467

wink command, 113

Windows client pro-

grams, 485

@wipe command, 420

wisdom (statistics), 161

wiz command, 224, 480

wizard regions, 479

wizards, 7, 205-212

advantages/disadvan-

tages, 208-209

apprentice wizards,

220-306

compared to player

characters, 208-209

creating objects, 206

creating rooms, 22

defining exits, 22

DikuMUD, 5

disciplining players, 206

echoall command, 88

invisibility, 206

LPMUDs, 5

programming MUDs,

219-306

selection process,

209-212

snooping, 206

Storyteller MUSHes, 117

teleporting, 206

transferring files via

MUDDweller, 197-198

wizard levels, 207-210,

219-220

Zombie 519
DOOD SOOSSSOSb6SS 9009 8O9G0908000000'

wizlist command,

224-225

wordpos() func-

tion, 430

words() function, 430

/world command

(TinyFugue), 201

World of Darkness

(MUSH role-playing),

35, 436

World Wide Web,

469-475

writable permissions,

350-352

#write command

(Tintin++), 186

write command, 325

write() function, 291

write_bytes() func-

tion, 291

write_file() func-

tion, 291

WriteMUSH, 467

#writesession command

(Tintin++), 186

X-Z
YAMA, 489

yawn command, 113

yellow potion, 174

$you say_action verb

(MOO), 363

Zen MOO, 467

Zombie, 468

*. 24g
e farm vert: hie SS

ebat tie ae

* \\ 4iftafy

7 ~ : yess)

ike eel

Add to Your Sams Library Today with the Best Books for
Programming, Operating Systems, and New Technologies

The easiest way to order is to pick up the phone and call

1-800-428-5331
between 9:00 a.m. and 5:00 p.m. EST.

For faster service please have your credit card available.

Curious About the Internet

Navigating the Internet, Deluxe Edition

Book/ Disks)

Teach Yourself Web Publishing with HTML

| ina Week

0-672-30617-4 World Wide Web Unleashed

0-672-30562-3 Teach Yourself Game Programming in 21 Days

(Book/CD)

0) 3 4" Disk

5 A" Disk

Shipping and Handling: $4.00 for the first book, and $1.75 for each additional book. Floppy disk: add $1.75 for shipping and

handling. If you need to have it NOW, we can ship product to you in 24 hours for an additional charge of approximately

$18.00, and you will receive your item overnight or in two days. Overseas shipping and handling adds $2.00 per book and

$8.00 for up to three disks. Prices subject to change. Call for availability and pricing information on latest editions.

201 W. 103rd Street, Indianapolis, Indiana 46290

1-800-428-5331 — Orders 1-800-835-3202 — FAX 1-800-858-7674 — Customer Service

Book ISBN 0-672-30723-5

<= pail ded divas ey =| ane mil

ee Scie Cle
Pacey

' j i> errs ost 0 we ie 206g belll tmp
7 | 6 1 Bee ‘Iieel 6itay tf

7 | : ap nV 1 Ls © Os Tony hag
: | | Korg of U1 eli ir =ubs eal cy

fea! he == Ab AM SOL

8 LS hel

PLUG YOURSELF INTO...

MACMILLAN INFORMATION SUPERLIBRARY ”

IN/RIP}
igccatne ime f

fad

SS corece

THE MACMILLAN INFORMATION SUPERLIBRARY”

Free information and vast computer resources from
the world’s leading computer book publisher—online!

FIND THE BOOKS THAT ARE RIGHT FOR YOU!
A complete online catalog, plus sample chapters and tables of contents give you an in-depth

look at all of our books, including hard-to-find titles. It’s the best way to find the books you need!

@ STAY INFORMED with the latest computer industry news through our online
newsletter, press releases, and customized Information SuperLibrary Reports.

@ GET FAST ANSWERS to your questions about MCP books and software.

@ VISIT our online bookstore for the latest information and editions!

@ COMMUNICATE with our expert authors through e-mail and conferences.

@ DOWNLOAD SOFTWARE from the immense MCP library:
- Source code and files from MCP books

- The best shareware, freeware, and demos

@ DISCOVER HOT SPOTS on other parts of the Internet.

@ WIN BOOKS in ongoing contests and giveaways!

- TOPLUGINTO MCP: |

GOPHER: gopher.mcp.com

FTP: ftp.mcp.com

WORLD WIDE WEB: http://www.mcp.com

+ ni ik

| Home Page. What’sNew Bookstore Refere’ Software Macmillan’ Talk to Us
“ : oe Des Library Overview , :

 @

a —

~VOATELTANYS MOVANT MALIIVGAMA oe

MVgTL (99 pron Mia Bey OG Goblets tal se

boAt li own dus Yoo iotuqmodnalbeal 2'htrmwy olf

iby (9 Pi es | a Ti 2n eee _- Ura

= 7 7 : >

7

—_ 7

yin ALA BAM PEC 2579 CM :
oht %) Lone) CRU Lys Biro

a
“ee

; 7 Vso
J 7 vs 7

Doh i a ul sl ah y if 7 ivi TAT2 @ - -

i F ? | j j - =i mae yaa)

7 ,

) por POW MA TAAN TA

Cer “eho h givinee-4 rive. ©

- . ATMUNTT) Oya we

i? DOO @ ae

octyl utes? Ee
ca? Fay SAVERIO. @

1 EI AI i huge

bred —

es

> Rhee

i WAL,

GET CONNECTED
to the ultimate source |

of computer information!

The MCP Forum on CompuServe
Go online with the world’s leading computer book publisher!

Macmillan Computer Publishing offers everything
you need for computer success!

Find the books that are right for you!
A complete online catalog, plus sample
chapters and tables of contents give
you an in-depth look at all our books.
The best way to shop or browse!

> Get fast answers and technical support for
MCP books and software

} Join discussion groups on major computer
subjects

> Interact with our expert authors via e-mail
and conferences

> Download software from our immense

library:

Source code from books

Demos of hot software

The best shareware and freeware

Graphics files

low Help

File Edit Services ce Special Window Help

A Simon & Schuster Macrntlian Company

Macmillan Comp Publ+ Forum

e 8

SYSOP: Lust access: 412/94 11-54 AM.

Join now and get a free
CompuServe Starter Kit!

To receive your free CompuServe Intro-
ductory Membership, call 1-800-848-
8199 and ask for representative #597.

The Starter Kit includes:
> Personal ID number and password

> $15 credit on the system

> Subscription to CompuServe Magazine

Once on the CompuServe System, type:

i GO MACMILLAN

hem t computer information anywhere! ! CompuServe

=
4

Ve

att ee

ote pris aie A pln
. QJ a

mri QING, > wi Pane < SEK af

Gala) ys Bode VSD er yy thee thos sup dw on

eo ieee ealty ecllchid) stage ali

arse Taangiincs iol

| ‘oe eX ney: - a oe aet

“Peo

iT ini poy OR SeoR

Ws) et tye vhost WS

usin

as

Command Abbreviation Description

act message message

drop object

examine object

get object

go direction direction

help

home

inventory

look

look object

page player = message p player=message

QUIT

say message "message

take object

whisper player = message w player=message

WHO

Acts the given message

Drops the object

Obtains detailed object info

Takes the object

Moves in the given direction

Accesses help facilities

Returns to your home room

Inventory

Looks at room description

Looks at object description

Pages player with message

Quits playing the MUD

Speaks the given message

Takes the object

Whispers message to player

Sees who else is playing

Explore the Depths of the
Internet’s Multi-User Dungeons!

Your quest has begun! It’s your t turn to wander the
corridors of the Net and unlock the magical, mystical ;
powers of MUDs, MOOs, MUCKs, and MUSHes. /

/

Let your imagination run wild with

Secrets of the MUD Wizards!

Unlock the secrets on how to become a —
wizard; walk through the process of _ Andrew Busey has over
programing objects and rooms, and adminis- severt years of Internet

ns a MUD : S experience, several of

Discover the best MUD sites i in the u universe
with the MUD directory

Explore al the commands and how to use
them to yon best ee

Uncover the differences between social MUDs
and combat MUDs A

Take a journey through the various MUDs,
MOOs, and MUCKs—in detail

Wander through real-life stories of successes and
failures, relationships, and MUD marriages os j

$25.09 USA Create your own fantastic world and program $34.95 CAN es
and Beye new MUDs 7 £19.90 Net UK

ISBN 0-672-30723-5

| 90000

"7806721307232 i

User Level —

